import streamlit as st from transformers import pipeline import re # Load upgraded models emotion_classifier = pipeline( "text-classification", model="j-hartmann/emotion-english-distilroberta-base", return_all_scores=True ) intent_classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli") # Candidate intents candidate_tasks = [ "change mobile plan", "top up balance", "report service outage", "ask for billing support", "reactivate service", "cancel subscription", "check account status", "upgrade device" ] # Emotion categories (updated) urgent_emotions = {"anger", "frustration", "anxiety", "urgency", "afraid", "annoyed"} moderate_emotions = {"confused", "sad", "tired", "concerned"} def get_emotion_label(emotion_result): sorted_emotions = sorted(emotion_result[0], key=lambda x: x['score'], reverse=True) return sorted_emotions[0]['label'] def get_emotion_score(emotion): if emotion.lower() in urgent_emotions: return 1.0 elif emotion.lower() in moderate_emotions: return 0.6 else: return 0.2 def get_content_score(text, top_intents): score = 0.0 trigger_words = ["out of service", "urgent", "not working", "stopped", "can't", "immediately"] if any(kw in text.lower() for kw in trigger_words): score += 0.3 if any(label in ["top up balance", "reactivate service", "report service outage"] for label in top_intents): score += 0.4 if any(label in ["change mobile plan", "ask for billing support"] for label in top_intents): score += 0.2 return min(score + 0.1, 1.0) def generate_reply(input_text, intent): # Intent-specific suggestion sentences intent_solutions = { "top up balance": "Your balance is ¥12. Current promo: recharge ¥100 get ¥5 bonus.", "reactivate service": "Your service is suspended due to unpaid ¥38. Recharge to restore within 30 mins.", "change mobile plan": "You're on Plan Basic (¥68/5GB). Suggest Plan Plus (¥98/20GB).", "check account status": "Your data usage is 3.2GB/5GB. Balance: ¥12. Calls left: 22 mins.", "ask for billing support": "Last bill was ¥96 for March. Includes data overage ¥16.", "cancel subscription": "Your contract ends on 2025-06-30. No penalty after this date.", "upgrade device": "You're eligible for upgrade. New iPhone plan starts at ¥399/month.", "report service outage": "We're detecting signal issues in your area (ZIP: XXX). Engineers notified." } # Intent-specific closing question intent_closings = { "top up balance": "Would you like to proceed with a recharge now?", "reactivate service": "Shall I help you restart your service now?", "report service outage": "Would you like me to file a service report for you?", "change mobile plan": "Would you like to switch to a better plan?", "ask for billing support": "Shall I show your last 3 billing records?", "cancel subscription": "Shall I guide you through cancellation?", "check account status": "Want a summary of your usage and balance?", "upgrade device": "Would you like me to show available upgrade options?" } solution = intent_solutions.get(intent.lower(), "Here's how we can assist you with this issue.") closing = intent_closings.get(intent.lower(), "Is there anything else I can help with?") opening = "Thank you for contacting us. I understand your concern." return f"{opening} {solution} {closing}" # Streamlit UI st.set_page_config(page_title="Customer Support Assistant", layout="centered") st.title("📞 Smart Customer Support Assistant (for Agents Only)") user_input = st.text_area("Enter customer's message or complaint:", height=150) if st.button("Analyze Message"): if user_input.strip() == "": st.warning("Please enter a customer message.") else: with st.spinner("Processing..."): # Emotion detection (updated) emotion_result = emotion_classifier(user_input) emotion_label = get_emotion_label(emotion_result) emotion_score = get_emotion_score(emotion_label) # Intent detection intent_result = intent_classifier(user_input, candidate_tasks) top_intents = [label for label, score in zip(intent_result['labels'], intent_result['scores']) if score > 0.15][:3] # Content score content_score = get_content_score(user_input, top_intents) # Final decision score final_score = (0.5 * emotion_score) + (0.5 * content_score) st.subheader("🧾 System Summary") if final_score < 0.5: st.markdown("### 🟢 This message was handled automatically.") if top_intents: auto_intent = top_intents[0] auto_reply = generate_reply(user_input, auto_intent) st.markdown("#### 🤖 Auto-Response Sent to User:") st.success(auto_reply) else: st.info("No clear intent detected. A general auto-reply was used.") else: st.markdown("### 🔴 Human Support Required") # Customer Profile Summary st.markdown("#### 👤 Customer Status:") st.write(f"- **Emotion detected**: {emotion_label.capitalize()}") st.write(f"- **Tone**: {'Urgent' if emotion_score > 0.8 else 'Concerned' if emotion_score > 0.5 else 'Calm'}") if top_intents: st.markdown("#### 🧩 Detected Customer Needs:") for intent in top_intents: reply = generate_reply(user_input, intent) st.markdown(f"**• {intent.capitalize()}**") st.write(reply) else: st.warning("No clear intent detected. Manual review recommended.")