File size: 6,864 Bytes
8174974
 
 
efa60b3
 
66128ac
efa60b3
8174974
 
 
49f0804
 
 
 
 
66128ac
efa60b3
8174974
 
 
0e52653
66128ac
0e52653
66128ac
 
 
 
b35a08e
 
0e52653
 
8174974
ef8cc0f
 
 
 
 
8174974
ef8cc0f
8174974
 
 
 
 
 
 
 
 
 
 
 
 
 
49f0804
0ca9296
49f0804
8174974
 
 
0ca9296
 
 
 
 
8174974
 
 
 
 
0ca9296
 
 
66128ac
8174974
 
 
 
b35a08e
49f0804
b35a08e
49f0804
b35a08e
 
 
66128ac
8174974
 
 
 
ef8cc0f
8174974
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b35a08e
0ca9296
b35a08e
66128ac
 
da8d9a8
66128ac
8174974
 
 
 
 
0e52653
8174974
0e52653
8174974
 
b35a08e
8174974
 
 
 
 
b35a08e
8174974
 
 
 
 
 
 
 
 
ef8cc0f
8174974
 
 
 
 
 
 
 
 
 
ef8cc0f
8174974
 
 
 
ef8cc0f
8174974
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
# Smart Customer Support Assistant (Enhanced UI Version)
# Note: Core analysis logic remains unchanged

import streamlit as st
from transformers import pipeline
import re

# ------------------------------
# Load models (same as before)
# ------------------------------
emotion_classifier = pipeline(
    "text-classification",
    model="j-hartmann/emotion-english-distilroberta-base",
    return_all_scores=True
)
intent_classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")

# ------------------------------
# Candidate tasks / templates
# ------------------------------
candidate_tasks = [
    "change mobile plan",
    "top up balance",
    "report service outage",
    "ask for billing support",
    "reactivate service",
    "cancel subscription",
    "check account status",
    "upgrade device"
]

intent_solutions = {
    "top up balance": "Your balance is ¥12. Promo: recharge ¥100 get ¥5 bonus.",
    "reactivate service": "Service suspended due to unpaid ¥38. Recharge to restore in 30 mins.",
    "change mobile plan": "You're on Basic (¥68/5GB). Suggest Plus (¥98/20GB).",
    "check account status": "Data: 3.2GB/5GB. Balance: ¥12. Calls left: 22 mins.",
    "ask for billing support": "Last bill: ¥96 (Mar). Includes ¥16 overage.",
    "cancel subscription": "Contract ends: 2025-06-30. No penalty after this date.",
    "upgrade device": "Eligible for upgrade. New iPhone plan: ¥399/month.",
    "report service outage": "Signal issues detected (ZIP: XXX). Engineers notified."
}

intent_closings = {
    "top up balance": "Proceed with recharge now?",
    "reactivate service": "Shall I help restart your service?",
    "report service outage": "Shall I file a service report?",
    "change mobile plan": "Switch to a better plan?",
    "ask for billing support": "Show recent billing records?",
    "cancel subscription": "Guide you through cancellation?",
    "check account status": "Show usage and balance?",
    "upgrade device": "See available upgrades?"
}

urgent_emotions = {"anger", "frustration", "anxiety", "urgency", "afraid", "annoyed"}
moderate_emotions = {"confused", "sad", "tired", "concerned", "sadness"}

# ------------------------------
# Emotion processing
# ------------------------------
def refine_emotion_label(text, model_emotion):
    text_lower = text.lower()
    urgent_keywords = ["fix", "now", "immediately", "urgent", "can't", "need", "asap"]
    exclamations = text.count("!")
    upper_words = sum(1 for word in text.split() if word.isupper())
    signal_score = sum([
        any(word in text_lower for word in urgent_keywords),
        exclamations >= 2,
        upper_words >= 1
    ])
    if model_emotion.lower() in {"joy", "neutral", "sadness"} and signal_score >= 2:
        return "urgency"
    return model_emotion

def get_emotion_label(emotion_result, text):
    sorted_emotions = sorted(emotion_result[0], key=lambda x: x['score'], reverse=True)
    return refine_emotion_label(text, sorted_emotions[0]['label'])

def get_emotion_score(emotion):
    if emotion.lower() in urgent_emotions:
        return 1.0
    elif emotion.lower() in moderate_emotions:
        return 0.6
    else:
        return 0.2

# ------------------------------
# Streamlit UI Logic
# ------------------------------
st.set_page_config(page_title="Smart Customer Support Assistant", layout="centered")
st.title("Smart Customer Support Assistant (for Agents Only)")

# Session state to store chat
if 'chat' not in st.session_state:
    st.session_state.chat = []
if 'system_result' not in st.session_state:
    st.session_state.system_result = None
if 'agent_reply' not in st.session_state:
    st.session_state.agent_reply = ""

# Display chat history
for msg in st.session_state.chat:
    with st.chat_message(msg['role']):
        st.markdown(msg['content'])

# Customer input + Analyze button
col1, col2 = st.columns([5,1])
with col1:
    user_input = st.text_input("Enter customer message:", key="user_input")
with col2:
    if st.button("Analyze"):
        if user_input.strip():
            # Run analysis pipeline
            emotion_result = emotion_classifier(user_input)
            emotion_label = get_emotion_label(emotion_result, user_input)
            emotion_score = get_emotion_score(emotion_label)

            intent_result = intent_classifier(user_input, candidate_tasks)
            top_intents = [label for label, score in zip(intent_result['labels'], intent_result['scores']) if score > 0.15][:3]

            content_score = 0.0
            if any(x in user_input.lower() for x in ["out of service", "can't", "urgent", "immediately"]):
                content_score += 0.4
            if any(label in ["top up balance", "reactivate service"] for label in top_intents):
                content_score += 0.4

            final_score = 0.5 * emotion_score + 0.5 * content_score

            # Store user message
            st.session_state.chat.append({"role": "user", "content": user_input})

            # Auto response or escalate to agent
            if final_score < 0.5 and top_intents:
                intent = top_intents[0]
                response = f"Thank you for contacting us. I understand your concern. {intent_solutions[intent]} {intent_closings[intent]}"
                st.session_state.chat.append({"role": "assistant", "content": response})
            else:
                st.session_state.system_result = {
                    "emotion": emotion_label,
                    "tone": "Urgent" if emotion_score > 0.8 else "Concerned" if emotion_score > 0.5 else "Calm",
                    "intents": top_intents
                }

# If human support needed
if st.session_state.system_result:
    st.markdown("---")
    st.subheader("Agent Response Panel")

    # Agent editable response
    st.session_state.agent_reply = st.text_area("Compose your reply:", value=st.session_state.agent_reply)
    if st.button("Send Reply"):
        if st.session_state.agent_reply.strip():
            st.session_state.chat.append({"role": "assistant", "content": st.session_state.agent_reply})
            st.session_state.agent_reply = ""
            st.session_state.system_result = None

    # Context info
    st.markdown("#### Customer Status")
    st.markdown(f"- **Emotion:** {st.session_state.system_result['emotion'].capitalize()}")
    st.markdown(f"- **Tone:** {st.session_state.system_result['tone']}")

    # Suggested replies
    st.markdown("#### Detected Customer Needs")
    for intent in st.session_state.system_result['intents']:
        st.markdown(f"**• {intent.capitalize()}**")
        suggestion = f"Thank you for contacting us. I understand your concern. {intent_solutions[intent]} {intent_closings[intent]}"
        if st.button(f"Use suggestion for '{intent}'", key=intent):
            st.session_state.agent_reply = suggestion