Spaces:
Sleeping
Sleeping
File size: 6,864 Bytes
8174974 efa60b3 66128ac efa60b3 8174974 49f0804 66128ac efa60b3 8174974 0e52653 66128ac 0e52653 66128ac b35a08e 0e52653 8174974 ef8cc0f 8174974 ef8cc0f 8174974 49f0804 0ca9296 49f0804 8174974 0ca9296 8174974 0ca9296 66128ac 8174974 b35a08e 49f0804 b35a08e 49f0804 b35a08e 66128ac 8174974 ef8cc0f 8174974 b35a08e 0ca9296 b35a08e 66128ac da8d9a8 66128ac 8174974 0e52653 8174974 0e52653 8174974 b35a08e 8174974 b35a08e 8174974 ef8cc0f 8174974 ef8cc0f 8174974 ef8cc0f 8174974 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
# Smart Customer Support Assistant (Enhanced UI Version)
# Note: Core analysis logic remains unchanged
import streamlit as st
from transformers import pipeline
import re
# ------------------------------
# Load models (same as before)
# ------------------------------
emotion_classifier = pipeline(
"text-classification",
model="j-hartmann/emotion-english-distilroberta-base",
return_all_scores=True
)
intent_classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
# ------------------------------
# Candidate tasks / templates
# ------------------------------
candidate_tasks = [
"change mobile plan",
"top up balance",
"report service outage",
"ask for billing support",
"reactivate service",
"cancel subscription",
"check account status",
"upgrade device"
]
intent_solutions = {
"top up balance": "Your balance is ¥12. Promo: recharge ¥100 get ¥5 bonus.",
"reactivate service": "Service suspended due to unpaid ¥38. Recharge to restore in 30 mins.",
"change mobile plan": "You're on Basic (¥68/5GB). Suggest Plus (¥98/20GB).",
"check account status": "Data: 3.2GB/5GB. Balance: ¥12. Calls left: 22 mins.",
"ask for billing support": "Last bill: ¥96 (Mar). Includes ¥16 overage.",
"cancel subscription": "Contract ends: 2025-06-30. No penalty after this date.",
"upgrade device": "Eligible for upgrade. New iPhone plan: ¥399/month.",
"report service outage": "Signal issues detected (ZIP: XXX). Engineers notified."
}
intent_closings = {
"top up balance": "Proceed with recharge now?",
"reactivate service": "Shall I help restart your service?",
"report service outage": "Shall I file a service report?",
"change mobile plan": "Switch to a better plan?",
"ask for billing support": "Show recent billing records?",
"cancel subscription": "Guide you through cancellation?",
"check account status": "Show usage and balance?",
"upgrade device": "See available upgrades?"
}
urgent_emotions = {"anger", "frustration", "anxiety", "urgency", "afraid", "annoyed"}
moderate_emotions = {"confused", "sad", "tired", "concerned", "sadness"}
# ------------------------------
# Emotion processing
# ------------------------------
def refine_emotion_label(text, model_emotion):
text_lower = text.lower()
urgent_keywords = ["fix", "now", "immediately", "urgent", "can't", "need", "asap"]
exclamations = text.count("!")
upper_words = sum(1 for word in text.split() if word.isupper())
signal_score = sum([
any(word in text_lower for word in urgent_keywords),
exclamations >= 2,
upper_words >= 1
])
if model_emotion.lower() in {"joy", "neutral", "sadness"} and signal_score >= 2:
return "urgency"
return model_emotion
def get_emotion_label(emotion_result, text):
sorted_emotions = sorted(emotion_result[0], key=lambda x: x['score'], reverse=True)
return refine_emotion_label(text, sorted_emotions[0]['label'])
def get_emotion_score(emotion):
if emotion.lower() in urgent_emotions:
return 1.0
elif emotion.lower() in moderate_emotions:
return 0.6
else:
return 0.2
# ------------------------------
# Streamlit UI Logic
# ------------------------------
st.set_page_config(page_title="Smart Customer Support Assistant", layout="centered")
st.title("Smart Customer Support Assistant (for Agents Only)")
# Session state to store chat
if 'chat' not in st.session_state:
st.session_state.chat = []
if 'system_result' not in st.session_state:
st.session_state.system_result = None
if 'agent_reply' not in st.session_state:
st.session_state.agent_reply = ""
# Display chat history
for msg in st.session_state.chat:
with st.chat_message(msg['role']):
st.markdown(msg['content'])
# Customer input + Analyze button
col1, col2 = st.columns([5,1])
with col1:
user_input = st.text_input("Enter customer message:", key="user_input")
with col2:
if st.button("Analyze"):
if user_input.strip():
# Run analysis pipeline
emotion_result = emotion_classifier(user_input)
emotion_label = get_emotion_label(emotion_result, user_input)
emotion_score = get_emotion_score(emotion_label)
intent_result = intent_classifier(user_input, candidate_tasks)
top_intents = [label for label, score in zip(intent_result['labels'], intent_result['scores']) if score > 0.15][:3]
content_score = 0.0
if any(x in user_input.lower() for x in ["out of service", "can't", "urgent", "immediately"]):
content_score += 0.4
if any(label in ["top up balance", "reactivate service"] for label in top_intents):
content_score += 0.4
final_score = 0.5 * emotion_score + 0.5 * content_score
# Store user message
st.session_state.chat.append({"role": "user", "content": user_input})
# Auto response or escalate to agent
if final_score < 0.5 and top_intents:
intent = top_intents[0]
response = f"Thank you for contacting us. I understand your concern. {intent_solutions[intent]} {intent_closings[intent]}"
st.session_state.chat.append({"role": "assistant", "content": response})
else:
st.session_state.system_result = {
"emotion": emotion_label,
"tone": "Urgent" if emotion_score > 0.8 else "Concerned" if emotion_score > 0.5 else "Calm",
"intents": top_intents
}
# If human support needed
if st.session_state.system_result:
st.markdown("---")
st.subheader("Agent Response Panel")
# Agent editable response
st.session_state.agent_reply = st.text_area("Compose your reply:", value=st.session_state.agent_reply)
if st.button("Send Reply"):
if st.session_state.agent_reply.strip():
st.session_state.chat.append({"role": "assistant", "content": st.session_state.agent_reply})
st.session_state.agent_reply = ""
st.session_state.system_result = None
# Context info
st.markdown("#### Customer Status")
st.markdown(f"- **Emotion:** {st.session_state.system_result['emotion'].capitalize()}")
st.markdown(f"- **Tone:** {st.session_state.system_result['tone']}")
# Suggested replies
st.markdown("#### Detected Customer Needs")
for intent in st.session_state.system_result['intents']:
st.markdown(f"**• {intent.capitalize()}**")
suggestion = f"Thank you for contacting us. I understand your concern. {intent_solutions[intent]} {intent_closings[intent]}"
if st.button(f"Use suggestion for '{intent}'", key=intent):
st.session_state.agent_reply = suggestion
|