Spaces:
Sleeping
Sleeping
File size: 5,184 Bytes
efa60b3 66128ac efa60b3 b35a08e 66128ac 0443ecd efa60b3 66128ac 0e52653 66128ac 0e52653 66128ac b35a08e 0e52653 b35a08e 66128ac b35a08e 6e13199 b35a08e 6e13199 b35a08e 66128ac b35a08e 66128ac e3db4d0 b35a08e e3db4d0 6e13199 b35a08e 6e13199 b35a08e efa60b3 b35a08e efa60b3 b35a08e efa60b3 b35a08e 6e13199 b35a08e da8d9a8 0db3c6a b35a08e 66128ac b35a08e 66128ac da8d9a8 66128ac b35a08e 0e52653 b35a08e 0e52653 b35a08e da8d9a8 66128ac b35a08e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 |
import streamlit as st
from transformers import pipeline
import re
# Load models
emotion_classifier = pipeline("text-classification", model="bhadresh-savani/distilbert-base-uncased-emotion", top_k=1)
intent_classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
text_generator = pipeline("text2text-generation", model="declare-lab/flan-alpaca-base", max_new_tokens=200)
# Candidate intents
candidate_tasks = [
"change mobile plan",
"top up balance",
"report service outage",
"ask for billing support",
"reactivate service",
"cancel subscription",
"check account status",
"upgrade device"
]
# Emotion scoring
urgent_emotions = {"anger", "annoyance", "disgust", "frustration", "sadness"}
moderate_emotions = {"confusion", "concern", "nervousness", "fear"}
def get_emotion_score(emotion):
if emotion in urgent_emotions:
return 1.0
elif emotion in moderate_emotions:
return 0.6
else:
return 0.2
def get_content_score(text, top_intents):
score = 0.0
trigger_words = ["out of service", "urgent", "not working", "stopped", "can't", "immediately"]
if any(kw in text.lower() for kw in trigger_words):
score += 0.3
if any(label in ["top up balance", "reactivate service", "report service outage"] for label in top_intents):
score += 0.4
if any(label in ["change mobile plan", "ask for billing support"] for label in top_intents):
score += 0.2
return min(score + 0.1, 1.0)
# Updated reply generator with intent-specific follow-up
def generate_reply(input_text, intent):
# Defined intent-specific closing prompts
intent_closings = {
"top up balance": "Would you like to see recharge options and prices?",
"reactivate service": "Shall I help you reactivate your number now?",
"report service outage": "Would you like me to file a service report for you?",
"change mobile plan": "Need me to compare available plans for you?",
"ask for billing support": "Would you like me to check your latest bill details?",
"cancel subscription": "Should I guide you through the cancellation process?",
"check account status": "Would you like an overview of your account status?",
"upgrade device": "Would you like me to show available upgrade options?"
}
closing = intent_closings.get(intent.lower(), "Is there anything else I can help you with?")
opening = "Thanks for reaching out. I understand your concern."
action = f"Here's how we can assist with '{intent.lower()}'."
reply = f"{opening} {action} {closing}"
return reply
# UI
st.set_page_config(page_title="Customer Support Assistant", layout="centered")
st.title("π Smart Customer Support Assistant (for Agents Only)")
user_input = st.text_area("Enter customer's message or complaint:", height=150)
if st.button("Analyze Message"):
if user_input.strip() == "":
st.warning("Please enter a customer message.")
else:
with st.spinner("Processing..."):
# Emotion detection
emotion_result = emotion_classifier(user_input)
emotion_data = emotion_result[0][0] if isinstance(emotion_result[0], list) else emotion_result[0]
emotion_label = emotion_data['label']
emotion_score = get_emotion_score(emotion_label)
# Intent detection
intent_result = intent_classifier(user_input, candidate_tasks)
top_intents = [label for label, score in zip(intent_result['labels'], intent_result['scores']) if score > 0.15][:3]
# Content score
content_score = get_content_score(user_input, top_intents)
# Final decision score
final_score = (0.5 * emotion_score) + (0.5 * content_score)
st.subheader("π§Ύ System Summary")
if final_score < 0.5:
st.markdown("### π’ This message was handled automatically.")
if top_intents:
auto_intent = top_intents[0]
auto_reply = generate_reply(user_input, auto_intent)
st.markdown("#### π€ Auto-Response Sent to User:")
st.success(auto_reply)
else:
st.info("No clear intent detected. A general auto-reply was used.")
else:
st.markdown("### π΄ Human Support Required")
# Customer Profile Summary
st.markdown("#### π€ Customer Status:")
st.write(f"- **Emotion detected**: {emotion_label.capitalize()}")
st.write(f"- **Tone**: {'Urgent' if emotion_score > 0.8 else 'Concerned' if emotion_score > 0.5 else 'Calm'}")
if top_intents:
st.markdown("#### π§© Detected Customer Needs:")
for intent in top_intents:
reply = generate_reply(user_input, intent)
st.markdown(f"**β’ {intent.capitalize()}**")
st.write(reply)
else:
st.warning("No clear intent detected. Manual review recommended.")
|