Spaces:
Runtime error
Runtime error
from transformers import AutoTokenizer, AutoModel | |
import torch | |
class SimpleEmbedder: | |
def __init__(self): | |
print("Loading tokenizer and model...") | |
self.tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L6-v2') | |
self.model = AutoModel.from_pretrained('sentence-transformers/all-MiniLM-L6-v2') | |
print("Loaded.") | |
def embed_text(self, text): | |
inputs = self.tokenizer(text, return_tensors='pt') | |
outputs = self.model(**inputs) | |
# Mean pooling | |
embeddings = outputs.last_hidden_state.mean(dim=1) | |
return embeddings | |
embedder = SimpleEmbedder() | |
print(embedder.embed_text("Hello world")) | |