Spaces:
Runtime error
Runtime error
Update Similarity.py
Browse files- Similarity.py +15 -11
Similarity.py
CHANGED
@@ -1,15 +1,19 @@
|
|
1 |
-
from
|
|
|
2 |
|
3 |
-
class
|
4 |
def __init__(self):
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
print("Loading SentenceTransformer model...")
|
10 |
-
self.model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
11 |
-
print("Model loaded.")
|
12 |
|
13 |
def embed_text(self, text):
|
14 |
-
self.
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoTokenizer, AutoModel
|
2 |
+
import torch
|
3 |
|
4 |
+
class SimpleEmbedder:
|
5 |
def __init__(self):
|
6 |
+
print("Loading tokenizer and model...")
|
7 |
+
self.tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
|
8 |
+
self.model = AutoModel.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
|
9 |
+
print("Loaded.")
|
|
|
|
|
|
|
10 |
|
11 |
def embed_text(self, text):
|
12 |
+
inputs = self.tokenizer(text, return_tensors='pt')
|
13 |
+
outputs = self.model(**inputs)
|
14 |
+
# Mean pooling
|
15 |
+
embeddings = outputs.last_hidden_state.mean(dim=1)
|
16 |
+
return embeddings
|
17 |
+
|
18 |
+
embedder = SimpleEmbedder()
|
19 |
+
print(embedder.embed_text("Hello world"))
|