Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline | |
# Load the model and tokenizer | |
tokenizer = AutoTokenizer.from_pretrained("kriton/greek-text-summarization") | |
model = AutoModelForSeq2SeqLM.from_pretrained("kriton/greek-text-summarization") | |
# Set up the summarizer pipeline | |
summarizer = pipeline("summarization", model=model, tokenizer=tokenizer) | |
# Define the summarization function | |
def generate_summary(article): | |
inputs = tokenizer( | |
'summarize: ' + article, | |
return_tensors="pt", | |
max_length=1024, | |
truncation=True, | |
padding="max_length", | |
) | |
outputs = model.generate( | |
inputs["input_ids"], | |
max_length=512, | |
min_length=130, | |
length_penalty=3.0, | |
num_beams=8, | |
early_stopping=True, | |
repetition_penalty=3.0, | |
) | |
return tokenizer.decode(outputs[0], skip_special_tokens=True) | |
# Create Gradio interface | |
iface = gr.Interface( | |
fn=generate_summary, # Function to run | |
inputs=gr.Textbox(label="Enter Greek Article", placeholder="Type or paste your article here..."), # Input component | |
outputs=gr.Textbox(label="Summary", interactive=True), # Output component | |
title="Greek Text Summarization", # Title for the UI | |
description="This app uses a pre-trained Greek summarization model to generate a brief summary of your input text.", # Description | |
allow_flagging="never" # Optional: Disable flagging feature | |
) | |
# Launch the interface | |
iface.launch() | |