Spaces:
Runtime error
Runtime error
File size: 1,521 Bytes
945bbd0 72fde3b 945bbd0 72fde3b da39e44 72fde3b 945bbd0 da39e44 1b33daa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 |
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
# Load the model and tokenizer
tokenizer = AutoTokenizer.from_pretrained("kriton/greek-text-summarization")
model = AutoModelForSeq2SeqLM.from_pretrained("kriton/greek-text-summarization")
# Set up the summarizer pipeline
summarizer = pipeline("summarization", model=model, tokenizer=tokenizer)
# Define the summarization function
def generate_summary(article):
inputs = tokenizer(
'summarize: ' + article,
return_tensors="pt",
max_length=1024,
truncation=True,
padding="max_length",
)
outputs = model.generate(
inputs["input_ids"],
max_length=512,
min_length=130,
length_penalty=3.0,
num_beams=8,
early_stopping=True,
repetition_penalty=3.0,
)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
# Create Gradio interface
iface = gr.Interface(
fn=generate_summary, # Function to run
inputs=gr.Textbox(label="Enter Greek Article", placeholder="Type or paste your article here..."), # Input component
outputs=gr.Textbox(label="Summary", interactive=True), # Output component
title="Greek Text Summarization", # Title for the UI
description="This app uses a pre-trained Greek summarization model to generate a brief summary of your input text.", # Description
allow_flagging="never" # Optional: Disable flagging feature
)
# Launch the interface
iface.launch()
|