|
!pip install transformers |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
device = "cuda" |
|
model_path = "ibm-granite/granite-3b-code-base" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path) |
|
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(model_path, device_map=device) |
|
model.eval() |
|
|
|
|
|
input_text = "def generate():" |
|
|
|
input_tokens = tokenizer(input_text, return_tensors="pt") |
|
|
|
|
|
for i in input_tokens: |
|
input_tokens[i] = input_tokens[i].to(device) |
|
|
|
|
|
output = model.generate(**input_tokens) |
|
|
|
output = tokenizer.batch_decode(output) |
|
|
|
|
|
for i in output: |
|
print(i) |