File size: 867 Bytes
84b50bc 7a2f4e5 5633f64 7a2f4e5 5633f64 7a2f4e5 5633f64 7a2f4e5 5633f64 7a2f4e5 5633f64 7a2f4e5 5633f64 7a2f4e5 5633f64 7a2f4e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 |
!pip install transformers
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda" # or "cpu"
model_path = "ibm-granite/granite-3b-code-base" # pick anyone from above list
tokenizer = AutoTokenizer.from_pretrained(model_path)
# drop device_map if running on CPU
model = AutoModelForCausalLM.from_pretrained(model_path, device_map=device)
model.eval()
# change input text as desired
input_text = "def generate():"
# tokenize the text
input_tokens = tokenizer(input_text, return_tensors="pt")
# transfer tokenized inputs to the device
for i in input_tokens:
input_tokens[i] = input_tokens[i].to(device)
# generate output tokens
output = model.generate(**input_tokens)
# decode output tokens into text
output = tokenizer.batch_decode(output)
# loop over the batch to print, in this example the batch size is 1
for i in output:
print(i) |