JoPmt's picture
Update app.py
334380b
raw
history blame
1.8 kB
from PIL import Image
import gradio as gr
import torch, os, random
from accelerate import Accelerator
from transformers import pipeline
from diffusers.utils import load_image
from diffusers import DiffusionPipeline, DDPMScheduler
accelerator = Accelerator(cpu=True)
warp_prior = accelerator.prepare(DiffusionPipeline.from_pretrained("warp-ai/wuerstchen-prior", torch_dtype=torch.bfloat16, use_safetensors=True, safety_cheker=None))
warp_prior.scheduler = DDPMScheduler.from_config(warp_prior.scheduler.config)
warp_prior = warp_prior.to("cpu")
warp = accelerator.prepare(DiffusionPipeline.from_pretrained("warp-ai/wuerstchen", torch_dtype=torch.bfloat16, use_safetensors=True, safety_checker=None))
warp.scheduler = DDPMScheduler.from_config(warp.scheduler.config)
warp = warp.to("cpu")
generator = torch.Generator(device="cpu").manual_seed(random.randint(1, 4876364))
def plex(cook, one, two):
###goof = load_image(img).resize((512, 512))
negative_prompt = "lowres,text,bad quality,low quality,jpeg artifacts,ugly,bad hands,bad face,blurry,bad eyes,watermark,signature"
warp_out = warp_prior(prompt=cook, height=512,width=512,negative_prompt=negative_prompt,guidance_scale=4.0, num_inference_steps=5,generator=generator)
primpt = ""
imas = warp(**warp_out, height=512, width=512, num_inference_steps=5, prompt=cook,negative_prompt=primpt,guidance_scale=0.0,output_type="pil",generator=generator).images[0]
return imas
iface = gr.Interface(fn=plex,inputs=[gr.Textbox(label="prompt"), gr.Slider(label="Inference steps",minimum=1,step=1,maximum=10,value=5), gr.Slider(label="Prior guidance scale",minimum=4.1,step=0.1,maximum=19.9,value=4.1)], outputs=gr.Image(), title="Txt2Img Wrstchn SD", description="Txt2Img Wrstchn SD")
iface.queue(max_size=1)
iface.launch(max_threads=1)