Spaces:
Sleeping
Sleeping
File size: 1,802 Bytes
0d02199 6688fb9 0d02199 7e5c1b8 0d02199 36ff355 0d02199 36ff355 0d02199 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 |
from PIL import Image
import gradio as gr
import torch, os, random
from accelerate import Accelerator
from transformers import pipeline
from diffusers.utils import load_image
from diffusers import DiffusionPipeline, DDPMScheduler
accelerator = Accelerator(cpu=True)
warp_prior = accelerator.prepare(DiffusionPipeline.from_pretrained("warp-ai/wuerstchen-prior", torch_dtype=torch.bfloat16, use_safetensors=True, safety_cheker=None))
warp_prior.scheduler = DDPMScheduler.from_config(warp_prior.scheduler.config)
warp_prior = warp_prior.to("cpu")
warp = accelerator.prepare(DiffusionPipeline.from_pretrained("warp-ai/wuerstchen", torch_dtype=torch.bfloat16, use_safetensors=True, safety_checker=None))
warp.scheduler = DDPMScheduler.from_config(warp.scheduler.config)
warp = warp.to("cpu")
generator = torch.Generator(device="cpu").manual_seed(random.randint(1, 4876364))
def plex(cook, one, two):
###goof = load_image(img).resize((512, 512))
negative_prompt = "lowres,text,bad quality,low quality,jpeg artifacts,ugly,bad hands,bad face,blurry,bad eyes,watermark,signature"
warp_out = warp_prior(prompt=cook, height=512,width=512,negative_prompt=negative_prompt,guidance_scale=4.0, num_inference_steps=5,generator=generator)
primpt = ""
imas = warp(**warp_out, height=512, width=512, num_inference_steps=5, prompt=cook,negative_prompt=primpt,guidance_scale=0.0,output_type="pil",generator=generator).images[0]
return imas
iface = gr.Interface(fn=plex,inputs=[gr.Textbox(label="prompt"), gr.Slider(label="Inference steps",minimum=1,step=1,maximum=10,value=5), gr.Slider(label="Prior guidance scale",minimum=4.1,step=0.1,maximum=19.9,value=4.1)], outputs=gr.Image(), title="Txt2Img Wrstchn SD", description="Txt2Img Wrstchn SD")
iface.queue(max_size=1)
iface.launch(max_threads=1) |