Update app.py
Browse files
app.py
CHANGED
@@ -112,15 +112,17 @@ sdulers =[
|
|
112 |
"VQDiffusionScheduler",
|
113 |
]
|
114 |
|
|
|
|
|
115 |
def plex(mput, prompt, neg_prompt, stips, modal_id, dula, blip, blop):
|
116 |
modal_id = ""+modal_id+""
|
117 |
dula=""+dula+"" ## shedulers todo
|
118 |
pope = accelerator.prepare(StableDiffusionPipeline.from_pretrained(modal_id, use_safetensors=False, safety_checker=None,torch_dtype=torch.float32))
|
|
|
119 |
pope = accelerator.prepare(pope.to("cpu"))
|
120 |
pipe = accelerator.prepare(StableDiffusionControlNetPipeline.from_pretrained(modal_id, use_safetensors=False,controlnet=controlnet, safety_checker=None,torch_dtype=torch.float32))
|
121 |
pipe = accelerator.prepare(pipe.to("cpu"))
|
122 |
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
123 |
-
generator = torch.Generator("cpu").manual_seed(random.randint(0, MAX_SEED))
|
124 |
|
125 |
tilage = pope(prompt,num_inference_steps=5,height=512,width=512,generator=generator).images[0]
|
126 |
cannyimage = np.array(tilage)
|
|
|
112 |
"VQDiffusionScheduler",
|
113 |
]
|
114 |
|
115 |
+
generator = torch.Generator(device="cpu").manual_seed(random.randint(0, MAX_SEED))
|
116 |
+
|
117 |
def plex(mput, prompt, neg_prompt, stips, modal_id, dula, blip, blop):
|
118 |
modal_id = ""+modal_id+""
|
119 |
dula=""+dula+"" ## shedulers todo
|
120 |
pope = accelerator.prepare(StableDiffusionPipeline.from_pretrained(modal_id, use_safetensors=False, safety_checker=None,torch_dtype=torch.float32))
|
121 |
+
pope.unet.to(memory_format=torch.channels_last)
|
122 |
pope = accelerator.prepare(pope.to("cpu"))
|
123 |
pipe = accelerator.prepare(StableDiffusionControlNetPipeline.from_pretrained(modal_id, use_safetensors=False,controlnet=controlnet, safety_checker=None,torch_dtype=torch.float32))
|
124 |
pipe = accelerator.prepare(pipe.to("cpu"))
|
125 |
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
|
|
126 |
|
127 |
tilage = pope(prompt,num_inference_steps=5,height=512,width=512,generator=generator).images[0]
|
128 |
cannyimage = np.array(tilage)
|