JoPmt commited on
Commit
87cf39f
·
1 Parent(s): 86f4a88

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -2
app.py CHANGED
@@ -113,7 +113,8 @@ sdulers =[
113
  ]
114
 
115
  def plex(mput, prompt, neg_prompt, stips, modal_id, dula, blip, blop):
116
- dula=dula ## shedulers todo
 
117
  pope = accelerator.prepare(StableDiffusionPipeline.from_pretrained(modal_id, use_safetensors=False, safety_checker=None,torch_dtype=torch.float32))
118
  pope = accelerator.prepare(pope.to("cpu"))
119
  pipe = accelerator.prepare(StableDiffusionControlNetPipeline.from_pretrained(modal_id, use_safetensors=False,controlnet=controlnet, safety_checker=None,torch_dtype=torch.float32))
@@ -139,5 +140,5 @@ def plex(mput, prompt, neg_prompt, stips, modal_id, dula, blip, blop):
139
  imoge = pipe(prompt,images,num_inference_steps=stips,negative_prompt=neg_prompt,controlnet_conditioning_scale=[blip, blop],generator=generator).images[0]
140
  return imoge
141
 
142
- iface = gr.Interface(fn=plex,inputs=[gr.Image(type="filepath"), gr.Textbox(label="prompt"), gr.Textbox(label="neg_prompt", value="monochrome, lowres, bad anatomy, worst quality, low quality"), gr.Slider(label="infer_steps", value=20, minimum=1, step=1, maximum=100), gr.Dropdown(choices=models, type="value", label="select a model"), gr.Dropdown(choices=sdulers, value=sdulers[0], type="value", label="schedulrs"), gr.Slider(label="condition_scale_canny", value=0.5, minimum=0.05, step=0.05, maximum=0.95), gr.Slider(label="condition_scale_pose", value=0.5, minimum=0.05, step=0.05, maximum=0.95)], outputs=gr.Image(), title="Img2Img Guided Multi-Conditioned Canny/Pose Controlnet Selectable StableDiffusion Model Demo", description="by JoPmt.")
143
  iface.launch()
 
113
  ]
114
 
115
  def plex(mput, prompt, neg_prompt, stips, modal_id, dula, blip, blop):
116
+ modal_id = ""+modal_id+""
117
+ dula=""+dula+"" ## shedulers todo
118
  pope = accelerator.prepare(StableDiffusionPipeline.from_pretrained(modal_id, use_safetensors=False, safety_checker=None,torch_dtype=torch.float32))
119
  pope = accelerator.prepare(pope.to("cpu"))
120
  pipe = accelerator.prepare(StableDiffusionControlNetPipeline.from_pretrained(modal_id, use_safetensors=False,controlnet=controlnet, safety_checker=None,torch_dtype=torch.float32))
 
140
  imoge = pipe(prompt,images,num_inference_steps=stips,negative_prompt=neg_prompt,controlnet_conditioning_scale=[blip, blop],generator=generator).images[0]
141
  return imoge
142
 
143
+ iface = gr.Interface(fn=plex,inputs=[gr.Image(type="filepath"), gr.Textbox(label="prompt"), gr.Textbox(label="neg_prompt", value="monochrome, lowres, bad anatomy, worst quality, low quality"), gr.Slider(label="infer_steps", value=20, minimum=1, step=1, maximum=100), gr.Dropdown(choices=models, value=models[0], type="value", label="select a model"), gr.Dropdown(choices=sdulers, value=sdulers[0], type="value", label="schedulrs"), gr.Slider(label="condition_scale_canny", value=0.5, minimum=0.05, step=0.05, maximum=0.95), gr.Slider(label="condition_scale_pose", value=0.5, minimum=0.05, step=0.05, maximum=0.95)], outputs=gr.Image(), title="Img2Img Guided Multi-Conditioned Canny/Pose Controlnet Selectable StableDiffusion Model Demo", description="by JoPmt.")
144
  iface.launch()