File size: 11,796 Bytes
bc852b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
from haystack import Pipeline, Document
from haystack.components.generators.openai import OpenAIGenerator
from haystack.components.builders import PromptBuilder
from haystack.components.embedders import SentenceTransformersDocumentEmbedder
from haystack.components.retrievers.in_memory import InMemoryEmbeddingRetriever
from haystack.document_stores.in_memory import InMemoryDocumentStore
from haystack.utils import Secret
from pathlib import Path
import logging
from dataclasses import dataclass, field
from typing import List, Dict, Any, Optional
import json
import asyncio
from datetime import datetime
import re

# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

@dataclass
class LocalizationConfig:
    """Configuration for Thai language handling"""
    thai_tokenizer_model: str = "thai-tokenizer"
    enable_thai_normalization: bool = True
    remove_thai_tones: bool = False
    keep_english: bool = True
    custom_stopwords: List[str] = field(default_factory=list)
    custom_synonyms: Dict[str, List[str]] = field(default_factory=dict)

@dataclass
class RetrieverConfig:
    """Configuration for document retrieval"""
    top_k: int = 5
    similarity_threshold: float = 0.7
    filter_duplicates: bool = True

@dataclass
class ModelConfig:
    """Configuration for language models"""
    openai_api_key: str
    temperature: float = 0.3
    max_tokens: int = 2000
    model: str = "gpt-4"
    embedder_model: str = "sentence-transformers/paraphrase-multilingual-mpnet-base-v2"

@dataclass
class PipelineConfig:
    """Main configuration for the RAG pipeline"""
    model: ModelConfig
    retriever: RetrieverConfig = field(default_factory=RetrieverConfig)
    localization: LocalizationConfig = field(default_factory=LocalizationConfig)

    def __post_init__(self):
        if not self.model.openai_api_key:
            raise ValueError("OpenAI API key is required")

class ThaiTextPreprocessor:
    """Thai text preprocessing utilities"""
    
    @staticmethod
    def normalize_thai_text(text: str) -> str:
        """Normalize Thai text"""
        if not text:
            return text
            
        # Normalize whitespace
        text = re.sub(r'\s+', ' ', text.strip())
        
        # Normalize Thai numerals
        thai_digits = '๐๑๒๓๔๕๖๗๘๙'
        arabic_digits = '0123456789'
        for thai, arabic in zip(thai_digits, arabic_digits):
            text = text.replace(thai, arabic)
        
        return text

class CalendarEvent:
    """Represents an academic calendar event"""
    
    def __init__(self, 
                 date: str,
                 activity: str,
                 semester: str,
                 event_type: str = "academic",
                 note: str = "",
                 time: str = "",
                 section: Optional[str] = None):
        self.date = date
        self.activity = activity
        self.semester = semester
        self.event_type = event_type
        self.note = note
        self.time = time
        self.section = section
    
    def to_searchable_text(self) -> str:
        """Convert event to searchable text format"""
        return f"""
        ภาคการศึกษา: {self.semester}
        ประเภท: {self.event_type}
        วันที่: {self.date}
        เวลา: {self.time or '-'}
        กิจกรรม: {self.activity}
        หมวดหมู่: {self.section or '-'}
        หมายเหตุ: {self.note or '-'}
        """.strip()

    @staticmethod
    def from_dict(data: Dict[str, Any]) -> 'CalendarEvent':
        """Create event from dictionary"""
        return CalendarEvent(
            date=data.get('date', ''),
            activity=data.get('activity', ''),
            semester=data.get('semester', ''),
            event_type=data.get('event_type', 'academic'),
            note=data.get('note', ''),
            time=data.get('time', ''),
            section=data.get('section')
        )

class CalendarRAG:
    """Main RAG pipeline for academic calendar"""
    
    def __init__(self, config: PipelineConfig):
        """Initialize the pipeline with configuration"""
        self.config = config
        self.document_store = InMemoryDocumentStore()
        self.embedder = SentenceTransformersDocumentEmbedder(
            model=config.model.embedder_model
        )
        self.text_preprocessor = ThaiTextPreprocessor()
        
        # Initialize OpenAI components
        self.generator = OpenAIGenerator(
            api_key=Secret.from_token(config.model.openai_api_key),
            model=config.model.model,
            temperature=config.model.temperature
        )
        
        self.query_analyzer = PromptBuilder(
            template="""
            วิเคราะห์คำถามเกี่ยวกับปฏิทินการศึกษานี้:
            คำถาม: {{query}}
            
            กรุณาระบุ:
            1. ประเภทของข้อมูลที่ต้องการ
            2. ภาคการศึกษาที่เกี่ยวข้อง
            3. คำสำคัญที่ต้องค้นหา
            
            ตอบในรูปแบบ JSON:
            {
                "event_type": "registration|deadline|examination|academic|holiday",
                "semester": "ภาคการศึกษาที่ระบุ หรือ null",
                "key_terms": ["คำสำคัญไม่เกิน 3 คำ"]
            }
            """
        )
        
        self.answer_generator = PromptBuilder(
            template="""
            คุณเป็นผู้ช่วยให้ข้อมูลปฏิทินการศึกษา กรุณาตอบคำถามต่อไปนี้โดยใช้ข้อมูลที่ให้มา:
            
            คำถาม: {{query}}
            
            ข้อมูลที่เกี่ยวข้อง:
            {% for doc in documents %}
            ---
            {{doc.content}}
            {% endfor %}
            
            คำแนะนำ:
            1. ตอบเป็นภาษาไทย
            2. ระบุวันที่และข้อกำหนดให้ชัดเจน
            3. รวมหมายเหตุหรือเงื่อนไขที่สำคัญ
            """
        )
    
    def load_data(self, calendar_data: List[Dict[str, Any]]) -> None:
        """Load calendar data into the system"""
        documents = []
        
        for entry in calendar_data:
            # Create calendar event
            event = CalendarEvent.from_dict(entry)
            
            # Create searchable document
            doc = Document(
                content=event.to_searchable_text(),
                meta={
                    "event_type": event.event_type,
                    "semester": event.semester,
                    "date": event.date
                }
            )
            documents.append(doc)
        
        # Compute embeddings
        embedded_docs = self.embedder.run(documents=documents)["documents"]
        
        # Store documents
        self.document_store.write_documents(embedded_docs)
    
    def process_query(self, query: str) -> Dict[str, Any]:
        """Process a calendar query and return results"""
        try:
            # Analyze query
            query_info = self._analyze_query(query)
            
            # Retrieve relevant documents
            documents = self._retrieve_documents(
                query,
                event_type=query_info.get("event_type"),
                semester=query_info.get("semester")
            )
            
            # Generate answer
            answer = self._generate_answer(query, documents)
            
            return {
                "answer": answer,
                "documents": documents,
                "query_info": query_info
            }
            
        except Exception as e:
            logger.error(f"Query processing failed: {str(e)}")
            return {
                "answer": "ขออภัย ไม่สามารถประมวลผลคำถามได้ในขณะนี้",
                "documents": [],
                "query_info": {}
            }
    
    def _analyze_query(self, query: str) -> Dict[str, Any]:
        """Analyze and extract information from query"""
        try:
            # Normalize query
            normalized_query = self.text_preprocessor.normalize_thai_text(query)
            
            # Get analysis from OpenAI
            prompt_result = self.query_analyzer.run(query=normalized_query)
            response = self.generator.run(prompt=prompt_result["prompt"])
            
            if not response or not response.get("replies"):
                raise ValueError("Empty response from query analyzer")
            
            analysis = json.loads(response["replies"][0])
            analysis["original_query"] = query
            
            return analysis
            
        except Exception as e:
            logger.error(f"Query analysis failed: {str(e)}")
            return {
                "original_query": query,
                "event_type": None,
                "semester": None,
                "key_terms": []
            }
    
    def _retrieve_documents(self, 
                          query: str, 
                          event_type: Optional[str] = None,
                          semester: Optional[str] = None) -> List[Document]:
        """Retrieve relevant documents"""
        # Create retriever
        retriever = InMemoryEmbeddingRetriever(
            document_store=self.document_store,
            top_k=self.config.retriever.top_k
        )
        
        # Get query embedding
        query_doc = Document(content=query)
        embedded_query = self.embedder.run(documents=[query_doc])["documents"][0]
        
        # Retrieve documents
        results = retriever.run(query_embedding=embedded_query.embedding)["documents"]
        
        # Filter results if needed
        filtered_results = []
        for doc in results:
            if event_type and doc.meta['event_type'] != event_type:
                continue
            if semester and doc.meta['semester'] != semester:
                continue
            filtered_results.append(doc)
        
        return filtered_results[:self.config.retriever.top_k]
    
    def _generate_answer(self, query: str, documents: List[Document]) -> str:
        """Generate answer from retrieved documents"""
        try:
            prompt_result = self.answer_generator.run(
                query=query,
                documents=documents
            )
            
            response = self.generator.run(prompt=prompt_result["prompt"])
            
            if not response or not response.get("replies"):
                raise ValueError("Empty response from answer generator")
            
            return response["replies"][0]
            
        except Exception as e:
            logger.error(f"Answer generation failed: {str(e)}")
            return "ขออภัย ไม่สามารถสร้างคำตอบได้ในขณะนี้"

def create_default_config(api_key: str) -> PipelineConfig:
    """Create default pipeline configuration"""
    model_config = ModelConfig(openai_api_key=api_key)
    return PipelineConfig(
        model=model_config,
        retriever=RetrieverConfig(),
        localization=LocalizationConfig()
    )