Spaces:
Runtime error
Runtime error
File size: 1,801 Bytes
a87c3be 0462cba 172362f 5b982d8 a87c3be 9378acd a87c3be 5b982d8 172362f d7acb8a 5b982d8 172362f 5b982d8 9378acd d7acb8a 5b982d8 d7acb8a 172362f 5b982d8 d7acb8a 5b982d8 d7acb8a 5b982d8 d7acb8a 5b982d8 a87c3be d7acb8a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
import gradio as gr
from transformers import SegformerFeatureExtractor, SegformerForSemanticSegmentation
from PIL import Image
import numpy as np
import torch
# λͺ¨λΈκ³Ό feature extractor λ‘λ
model_name = "nvidia/segformer-b0-finetuned-ade-512-512"
model = SegformerForSemanticSegmentation.from_pretrained(model_name)
feature_extractor = SegformerFeatureExtractor.from_pretrained(model_name)
def create_color_map(num_classes):
""" μμμ μμ λ§€ν μμ± """
np.random.seed(42) # μ¬νμ±μ μν μλ μ€μ
return {i: np.random.randint(0, 256, 3) for i in range(num_classes)}
def segment_image(image):
# μ΄λ―Έμ§ μ²λ¦¬
inputs = feature_extractor(images=image, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
# λ§μ€ν¬ μμ±
upsampled_logits = torch.nn.functional.interpolate(
outputs.logits, size=image.size[::-1], mode="bilinear", align_corners=False
)
upsampled_predictions = upsampled_logits.argmax(dim=1)
mask = upsampled_predictions.squeeze().numpy()
# μμ λ§€ν
color_map = create_color_map(150) # ADE20Kμλ μ½ 150κ°μ ν΄λμ€κ° μμ
colored_mask = np.array([color_map[class_id] for class_id in mask.flatten()]).reshape(mask.shape + (3,))
# κ²°κ³Ό λ°ν
return Image.fromarray(colored_mask.astype(np.uint8))
# μμ μ΄λ―Έμ§ κ²½λ‘
example_images = ["path/to/image1.jpg", "path/to/image2.jpg", "path/to/image3.jpg"]
# Gradio μΈν°νμ΄μ€ μ€μ
iface = gr.Interface(
fn=segment_image,
inputs=gr.inputs.Image(type="pil"),
outputs="image",
title="Image Segmentation with SegFormer",
description="Upload an image to segment it using SegFormer model.",
examples=example_images
)
# μΈν°νμ΄μ€ μ€ν
iface.launch()
|