JinHyeong99 commited on
Commit
d7acb8a
ยท
1 Parent(s): 5b982d8
Files changed (5) hide show
  1. app.py +15 -5
  2. config.json +308 -46
  3. preprocessor_config.json +1 -1
  4. pytorch_model.bin +2 -2
  5. tf_model.h5 +2 -2
app.py CHANGED
@@ -9,6 +9,11 @@ model_name = "nvidia/segformer-b0-finetuned-ade-512-512"
9
  model = SegformerForSemanticSegmentation.from_pretrained(model_name)
10
  feature_extractor = SegformerFeatureExtractor.from_pretrained(model_name)
11
 
 
 
 
 
 
12
  def segment_image(image):
13
  # ์ด๋ฏธ์ง€ ์ฒ˜๋ฆฌ
14
  inputs = feature_extractor(images=image, return_tensors="pt")
@@ -22,20 +27,25 @@ def segment_image(image):
22
  upsampled_predictions = upsampled_logits.argmax(dim=1)
23
  mask = upsampled_predictions.squeeze().numpy()
24
 
 
 
 
 
25
  # ๊ฒฐ๊ณผ ๋ฐ˜ํ™˜
26
- return Image.fromarray(np.uint8(mask * 255))
27
 
28
  # ์˜ˆ์‹œ ์ด๋ฏธ์ง€ ๊ฒฝ๋กœ
29
- example_images = ["image1.jpg", "image2.jpg", "image3.jpg"]
30
 
31
  # Gradio ์ธํ„ฐํŽ˜์ด์Šค ์„ค์ •
32
- demo = gr.Interface(
33
  fn=segment_image,
34
  inputs=gr.inputs.Image(type="pil"),
35
  outputs="image",
36
- title="๋จธ์‹ ๋Ÿฌ๋‹ 7์ฃผ์ฐจ ๊ณผ์ œ_3",
 
37
  examples=example_images
38
  )
39
 
40
  # ์ธํ„ฐํŽ˜์ด์Šค ์‹คํ–‰
41
- demo.launch()
 
9
  model = SegformerForSemanticSegmentation.from_pretrained(model_name)
10
  feature_extractor = SegformerFeatureExtractor.from_pretrained(model_name)
11
 
12
+ def create_color_map(num_classes):
13
+ """ ์ž„์˜์˜ ์ƒ‰์ƒ ๋งคํ•‘ ์ƒ์„ฑ """
14
+ np.random.seed(42) # ์žฌํ˜„์„ฑ์„ ์œ„ํ•œ ์‹œ๋“œ ์„ค์ •
15
+ return {i: np.random.randint(0, 256, 3) for i in range(num_classes)}
16
+
17
  def segment_image(image):
18
  # ์ด๋ฏธ์ง€ ์ฒ˜๋ฆฌ
19
  inputs = feature_extractor(images=image, return_tensors="pt")
 
27
  upsampled_predictions = upsampled_logits.argmax(dim=1)
28
  mask = upsampled_predictions.squeeze().numpy()
29
 
30
+ # ์ƒ‰์ƒ ๋งคํ•‘
31
+ color_map = create_color_map(150) # ADE20K์—๋Š” ์•ฝ 150๊ฐœ์˜ ํด๋ž˜์Šค๊ฐ€ ์žˆ์Œ
32
+ colored_mask = np.array([color_map[class_id] for class_id in mask.flatten()]).reshape(mask.shape + (3,))
33
+
34
  # ๊ฒฐ๊ณผ ๋ฐ˜ํ™˜
35
+ return Image.fromarray(colored_mask.astype(np.uint8))
36
 
37
  # ์˜ˆ์‹œ ์ด๋ฏธ์ง€ ๊ฒฝ๋กœ
38
+ example_images = ["path/to/image1.jpg", "path/to/image2.jpg", "path/to/image3.jpg"]
39
 
40
  # Gradio ์ธํ„ฐํŽ˜์ด์Šค ์„ค์ •
41
+ iface = gr.Interface(
42
  fn=segment_image,
43
  inputs=gr.inputs.Image(type="pil"),
44
  outputs="image",
45
+ title="Image Segmentation with SegFormer",
46
+ description="Upload an image to segment it using SegFormer model.",
47
  examples=example_images
48
  )
49
 
50
  # ์ธํ„ฐํŽ˜์ด์Šค ์‹คํ–‰
51
+ iface.launch()
config.json CHANGED
@@ -4,12 +4,12 @@
4
  ],
5
  "attention_probs_dropout_prob": 0.0,
6
  "classifier_dropout_prob": 0.1,
7
- "decoder_hidden_size": 768,
8
  "depths": [
9
- 3,
10
- 4,
11
- 18,
12
- 3
13
  ],
14
  "downsampling_rates": [
15
  1,
@@ -21,54 +21,316 @@
21
  "hidden_act": "gelu",
22
  "hidden_dropout_prob": 0.0,
23
  "hidden_sizes": [
 
24
  64,
25
- 128,
26
- 320,
27
- 512
28
  ],
29
  "id2label": {
30
- "0": "road",
31
- "1": "sidewalk",
32
- "2": "building",
33
- "3": "wall",
34
- "4": "fence",
35
- "5": "pole",
36
- "6": "traffic light",
37
- "7": "traffic sign",
38
- "8": "vegetation",
39
- "9": "terrain",
40
- "10": "sky",
41
- "11": "person",
42
- "12": "rider",
43
- "13": "car",
44
- "14": "truck",
45
- "15": "bus",
46
- "16": "train",
47
- "17": "motorcycle",
48
- "18": "bicycle"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49
  },
50
  "image_size": 224,
51
  "initializer_range": 0.02,
52
  "label2id": {
53
- "bicycle": 18,
54
- "building": 2,
55
- "bus": 15,
56
- "car": 13,
57
- "fence": 4,
58
- "motorcycle": 17,
59
- "person": 11,
60
- "pole": 5,
61
- "rider": 12,
62
- "road": 0,
63
- "sidewalk": 1,
64
- "sky": 10,
65
- "terrain": 9,
66
- "traffic light": 6,
67
- "traffic sign": 7,
68
- "train": 16,
69
- "truck": 14,
70
- "vegetation": 8,
71
- "wall": 3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72
  },
73
  "layer_norm_eps": 1e-06,
74
  "mlp_ratios": [
 
4
  ],
5
  "attention_probs_dropout_prob": 0.0,
6
  "classifier_dropout_prob": 0.1,
7
+ "decoder_hidden_size": 256,
8
  "depths": [
9
+ 2,
10
+ 2,
11
+ 2,
12
+ 2
13
  ],
14
  "downsampling_rates": [
15
  1,
 
21
  "hidden_act": "gelu",
22
  "hidden_dropout_prob": 0.0,
23
  "hidden_sizes": [
24
+ 32,
25
  64,
26
+ 160,
27
+ 256
 
28
  ],
29
  "id2label": {
30
+ "0": "wall",
31
+ "1": "building",
32
+ "2": "sky",
33
+ "3": "floor",
34
+ "4": "tree",
35
+ "5": "ceiling",
36
+ "6": "road",
37
+ "7": "bed ",
38
+ "8": "windowpane",
39
+ "9": "grass",
40
+ "10": "cabinet",
41
+ "11": "sidewalk",
42
+ "12": "person",
43
+ "13": "earth",
44
+ "14": "door",
45
+ "15": "table",
46
+ "16": "mountain",
47
+ "17": "plant",
48
+ "18": "curtain",
49
+ "19": "chair",
50
+ "20": "car",
51
+ "21": "water",
52
+ "22": "painting",
53
+ "23": "sofa",
54
+ "24": "shelf",
55
+ "25": "house",
56
+ "26": "sea",
57
+ "27": "mirror",
58
+ "28": "rug",
59
+ "29": "field",
60
+ "30": "armchair",
61
+ "31": "seat",
62
+ "32": "fence",
63
+ "33": "desk",
64
+ "34": "rock",
65
+ "35": "wardrobe",
66
+ "36": "lamp",
67
+ "37": "bathtub",
68
+ "38": "railing",
69
+ "39": "cushion",
70
+ "40": "base",
71
+ "41": "box",
72
+ "42": "column",
73
+ "43": "signboard",
74
+ "44": "chest of drawers",
75
+ "45": "counter",
76
+ "46": "sand",
77
+ "47": "sink",
78
+ "48": "skyscraper",
79
+ "49": "fireplace",
80
+ "50": "refrigerator",
81
+ "51": "grandstand",
82
+ "52": "path",
83
+ "53": "stairs",
84
+ "54": "runway",
85
+ "55": "case",
86
+ "56": "pool table",
87
+ "57": "pillow",
88
+ "58": "screen door",
89
+ "59": "stairway",
90
+ "60": "river",
91
+ "61": "bridge",
92
+ "62": "bookcase",
93
+ "63": "blind",
94
+ "64": "coffee table",
95
+ "65": "toilet",
96
+ "66": "flower",
97
+ "67": "book",
98
+ "68": "hill",
99
+ "69": "bench",
100
+ "70": "countertop",
101
+ "71": "stove",
102
+ "72": "palm",
103
+ "73": "kitchen island",
104
+ "74": "computer",
105
+ "75": "swivel chair",
106
+ "76": "boat",
107
+ "77": "bar",
108
+ "78": "arcade machine",
109
+ "79": "hovel",
110
+ "80": "bus",
111
+ "81": "towel",
112
+ "82": "light",
113
+ "83": "truck",
114
+ "84": "tower",
115
+ "85": "chandelier",
116
+ "86": "awning",
117
+ "87": "streetlight",
118
+ "88": "booth",
119
+ "89": "television receiver",
120
+ "90": "airplane",
121
+ "91": "dirt track",
122
+ "92": "apparel",
123
+ "93": "pole",
124
+ "94": "land",
125
+ "95": "bannister",
126
+ "96": "escalator",
127
+ "97": "ottoman",
128
+ "98": "bottle",
129
+ "99": "buffet",
130
+ "100": "poster",
131
+ "101": "stage",
132
+ "102": "van",
133
+ "103": "ship",
134
+ "104": "fountain",
135
+ "105": "conveyer belt",
136
+ "106": "canopy",
137
+ "107": "washer",
138
+ "108": "plaything",
139
+ "109": "swimming pool",
140
+ "110": "stool",
141
+ "111": "barrel",
142
+ "112": "basket",
143
+ "113": "waterfall",
144
+ "114": "tent",
145
+ "115": "bag",
146
+ "116": "minibike",
147
+ "117": "cradle",
148
+ "118": "oven",
149
+ "119": "ball",
150
+ "120": "food",
151
+ "121": "step",
152
+ "122": "tank",
153
+ "123": "trade name",
154
+ "124": "microwave",
155
+ "125": "pot",
156
+ "126": "animal",
157
+ "127": "bicycle",
158
+ "128": "lake",
159
+ "129": "dishwasher",
160
+ "130": "screen",
161
+ "131": "blanket",
162
+ "132": "sculpture",
163
+ "133": "hood",
164
+ "134": "sconce",
165
+ "135": "vase",
166
+ "136": "traffic light",
167
+ "137": "tray",
168
+ "138": "ashcan",
169
+ "139": "fan",
170
+ "140": "pier",
171
+ "141": "crt screen",
172
+ "142": "plate",
173
+ "143": "monitor",
174
+ "144": "bulletin board",
175
+ "145": "shower",
176
+ "146": "radiator",
177
+ "147": "glass",
178
+ "148": "clock",
179
+ "149": "flag"
180
  },
181
  "image_size": 224,
182
  "initializer_range": 0.02,
183
  "label2id": {
184
+ "airplane": 90,
185
+ "animal": 126,
186
+ "apparel": 92,
187
+ "arcade machine": 78,
188
+ "armchair": 30,
189
+ "ashcan": 138,
190
+ "awning": 86,
191
+ "bag": 115,
192
+ "ball": 119,
193
+ "bannister": 95,
194
+ "bar": 77,
195
+ "barrel": 111,
196
+ "base": 40,
197
+ "basket": 112,
198
+ "bathtub": 37,
199
+ "bed ": 7,
200
+ "bench": 69,
201
+ "bicycle": 127,
202
+ "blanket": 131,
203
+ "blind": 63,
204
+ "boat": 76,
205
+ "book": 67,
206
+ "bookcase": 62,
207
+ "booth": 88,
208
+ "bottle": 98,
209
+ "box": 41,
210
+ "bridge": 61,
211
+ "buffet": 99,
212
+ "building": 1,
213
+ "bulletin board": 144,
214
+ "bus": 80,
215
+ "cabinet": 10,
216
+ "canopy": 106,
217
+ "car": 20,
218
+ "case": 55,
219
+ "ceiling": 5,
220
+ "chair": 19,
221
+ "chandelier": 85,
222
+ "chest of drawers": 44,
223
+ "clock": 148,
224
+ "coffee table": 64,
225
+ "column": 42,
226
+ "computer": 74,
227
+ "conveyer belt": 105,
228
+ "counter": 45,
229
+ "countertop": 70,
230
+ "cradle": 117,
231
+ "crt screen": 141,
232
+ "curtain": 18,
233
+ "cushion": 39,
234
+ "desk": 33,
235
+ "dirt track": 91,
236
+ "dishwasher": 129,
237
+ "door": 14,
238
+ "earth": 13,
239
+ "escalator": 96,
240
+ "fan": 139,
241
+ "fence": 32,
242
+ "field": 29,
243
+ "fireplace": 49,
244
+ "flag": 149,
245
+ "floor": 3,
246
+ "flower": 66,
247
+ "food": 120,
248
+ "fountain": 104,
249
+ "glass": 147,
250
+ "grandstand": 51,
251
+ "grass": 9,
252
+ "hill": 68,
253
+ "hood": 133,
254
+ "house": 25,
255
+ "hovel": 79,
256
+ "kitchen island": 73,
257
+ "lake": 128,
258
+ "lamp": 36,
259
+ "land": 94,
260
+ "light": 82,
261
+ "microwave": 124,
262
+ "minibike": 116,
263
+ "mirror": 27,
264
+ "monitor": 143,
265
+ "mountain": 16,
266
+ "ottoman": 97,
267
+ "oven": 118,
268
+ "painting": 22,
269
+ "palm": 72,
270
+ "path": 52,
271
+ "person": 12,
272
+ "pier": 140,
273
+ "pillow": 57,
274
+ "plant": 17,
275
+ "plate": 142,
276
+ "plaything": 108,
277
+ "pole": 93,
278
+ "pool table": 56,
279
+ "poster": 100,
280
+ "pot": 125,
281
+ "radiator": 146,
282
+ "railing": 38,
283
+ "refrigerator": 50,
284
+ "river": 60,
285
+ "road": 6,
286
+ "rock": 34,
287
+ "rug": 28,
288
+ "runway": 54,
289
+ "sand": 46,
290
+ "sconce": 134,
291
+ "screen": 130,
292
+ "screen door": 58,
293
+ "sculpture": 132,
294
+ "sea": 26,
295
+ "seat": 31,
296
+ "shelf": 24,
297
+ "ship": 103,
298
+ "shower": 145,
299
+ "sidewalk": 11,
300
+ "signboard": 43,
301
+ "sink": 47,
302
+ "sky": 2,
303
+ "skyscraper": 48,
304
+ "sofa": 23,
305
+ "stage": 101,
306
+ "stairs": 53,
307
+ "stairway": 59,
308
+ "step": 121,
309
+ "stool": 110,
310
+ "stove": 71,
311
+ "streetlight": 87,
312
+ "swimming pool": 109,
313
+ "swivel chair": 75,
314
+ "table": 15,
315
+ "tank": 122,
316
+ "television receiver": 89,
317
+ "tent": 114,
318
+ "toilet": 65,
319
+ "towel": 81,
320
+ "tower": 84,
321
+ "trade name": 123,
322
+ "traffic light": 136,
323
+ "tray": 137,
324
+ "tree": 4,
325
+ "truck": 83,
326
+ "van": 102,
327
+ "vase": 135,
328
+ "wall": 0,
329
+ "wardrobe": 35,
330
+ "washer": 107,
331
+ "water": 21,
332
+ "waterfall": 113,
333
+ "windowpane": 8
334
  },
335
  "layer_norm_eps": 1e-06,
336
  "mlp_ratios": [
preprocessor_config.json CHANGED
@@ -12,7 +12,7 @@
12
  0.224,
13
  0.225
14
  ],
15
- "reduce_labels": false,
16
  "resample": 2,
17
  "size": 512
18
  }
 
12
  0.224,
13
  0.225
14
  ],
15
+ "reduce_labels": true,
16
  "resample": 2,
17
  "size": 512
18
  }
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:4b3916b8781255eaa6b596be75eb4610001e2ff18083a4aa897539e1d1f41f3f
3
- size 189204985
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0f4df97633cbedd558ecffa3ad228ace5af37e082678390b45a9d22745787c61
3
+ size 15092257
tf_model.h5 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:c522e7c5c3416e9c2009fbd90cd6e36912b8d9d8b1cd0c591e1be4daadbfb343
3
- size 189787044
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d38f99e2a8e73bbdb4635669be5bfcbbfc85b4b5c1ac75d36b47312c7fc5d06e
3
+ size 15285696