Spaces:
Runtime error
Runtime error
File size: 1,275 Bytes
a87c3be f9b645e d354cb9 f9b645e d354cb9 f9b645e cd60cf8 d354cb9 f9b645e 9c81346 e11720a f9b645e 6bd6b36 e11720a 87d6ca1 f9b645e 27c1f72 f9b645e bef3ba2 f9b645e 9c81346 f9b645e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
import gradio as gr
from transformers import SegformerFeatureExtractor, SegformerForSemanticSegmentation
from PIL import Image
import numpy as np
# 모델과 특징 추출기 불러오기
feature_extractor = SegformerFeatureExtractor.from_pretrained("nvidia/segformer-b0-finetuned-cityscapes-512-1024")
model = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-cityscapes-512-1024")
def segment_image(image):
# 이미지를 처리하고 모델에 전달하기
inputs = feature_extractor(images=image, return_tensors="pt")
outputs = model(**inputs)
logits = outputs.logits
# 결과 처리 및 NumPy 배열로 변환
result = logits.argmax(dim=1)[0]
result = result.cpu().detach().numpy()
result_image = Image.fromarray(result.astype(np.uint8), mode="P").convert("RGB")
# 결과 배열 반환
return result_image
# Gradio 인터페이스 정의
iface = gr.Interface(
fn=segment_image,
inputs=gr.inputs.Image(type='pil'),
examples = ['image1.jpg', 'image2.jpg', 'image3.jpg'],
outputs= 'image',
title="SegFormer Image Segmentation",
description="Upload an image to segment it using the SegFormer model trained on Cityscapes dataset."
)
# 인터페이스 실행
iface.launch()
|