JinHyeong99 commited on
Commit
d354cb9
ยท
1 Parent(s): 6038241
Files changed (1) hide show
  1. app.py +103 -27
app.py CHANGED
@@ -1,35 +1,111 @@
1
  import gradio as gr
2
- from transformers import SegformerFeatureExtractor, SegformerForSemanticSegmentation
3
- from PIL import Image
 
4
  import numpy as np
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
 
6
- # ๋ชจ๋ธ๊ณผ ํŠน์ง• ์ถ”์ถœ๊ธฐ ๋ถˆ๋Ÿฌ์˜ค๊ธฐ
7
- feature_extractor = SegformerFeatureExtractor.from_pretrained("nvidia/segformer-b5-finetuned-cityscapes-1024-1024")
8
- model = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b5-finetuned-cityscapes-1024-1024")
9
 
10
- def segment_image(image):
11
- # ์ด๋ฏธ์ง€๋ฅผ ์ฒ˜๋ฆฌํ•˜๊ณ  ๋ชจ๋ธ์— ์ „๋‹ฌํ•˜๊ธฐ
12
- inputs = feature_extractor(images=image, return_tensors="pt")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
  outputs = model(**inputs)
14
  logits = outputs.logits
15
 
16
- # ๊ฒฐ๊ณผ ์ฒ˜๋ฆฌ ๋ฐ ์ด๋ฏธ์ง€๋กœ ๋ณ€ํ™˜
17
- result = logits.argmax(dim=1)[0]
18
- result = result.cpu().detach().numpy()
19
- result_image = Image.fromarray(result.astype(np.uint8), mode="P")
20
-
21
- # ๊ฒฐ๊ณผ ์ด๋ฏธ์ง€ ๋ฐ˜ํ™˜
22
- return result_image
23
-
24
- # Gradio ์ธํ„ฐํŽ˜์ด์Šค ์ •์˜
25
- iface = gr.Interface(
26
- fn=segment_image,
27
- inputs=gr.inputs.Image(type="pil"),
28
- examples = ['image1.jpg', 'image2.jpg', 'image3.jpg'],
29
- outputs="image",
30
- title="SegFormer Image Segmentation",
31
- description="Upload an image to segment it using the SegFormer model trained on Cityscapes dataset."
32
- )
 
 
 
 
 
 
 
 
33
 
34
- # ์ธํ„ฐํŽ˜์ด์Šค ์‹คํ–‰
35
- iface.launch()
 
1
  import gradio as gr
2
+
3
+ from matplotlib import gridspec
4
+ import matplotlib.pyplot as plt
5
  import numpy as np
6
+ from PIL import Image
7
+ import tensorflow as tf
8
+ from transformers import SegformerFeatureExtractor, TFSegformerForSemanticSegmentation
9
+
10
+ feature_extractor = SegformerFeatureExtractor.from_pretrained(
11
+ "nvidia/segformer-b5-finetuned-cityscapes-1024-1024"
12
+ )
13
+ model = TFSegformerForSemanticSegmentation.from_pretrained(
14
+ "nvidia/segformer-b5-finetuned-cityscapes-1024-1024"
15
+ )
16
+
17
+ def ade_palette():
18
+ """ADE20K palette that maps each class to RGB values."""
19
+ return [
20
+ [255,0,0], #๋นจ๊ฐ•
21
+ [255,228,0], #๋…ธ๋ž‘
22
+ [171,242,0], # ์—ฐ๋‘
23
+ [0,216,255], #ํ•˜๋Š˜
24
+ [0,0,255], #ํŒŒ๋ž‘
25
+ [255,0,221], #ํ•‘ํฌ
26
+ [116,116,116], #ํšŒ์ƒ‰
27
+ [95,0,255], #๋ณด๋ผ
28
+ [255,94,0], #์ฃผํ™ฉ
29
+ [71,200,62], #์ดˆ๋ก
30
+ [153,0,76], #๋งˆ์  ํƒ€
31
+ [67,116,217], #์• ๋งคํ•œํ•˜๋Š˜ + ํŒŒ๋ž‘
32
+ [153,112,0], #๊ฒจ์ž
33
+ [87,129,0], #๋…น์ƒ‰
34
+ [255,169,169], #๋ถ„ํ™๋ถ„ํ™
35
+ [35,30,183], #์–ด๋‘์šด ํŒŒ๋ž‘
36
+ [225,186,133], #์‚ด์ƒ‰
37
+ [206,251,201] #์—ฐํ•œ์ดˆ๋ก
38
+ [165,102,255] #์• ๋งคํ•œ ๋ณด๋ผ
39
+ ]
40
+
41
+ labels_list = []
42
+
43
+ with open(r'labels.txt', 'r') as fp:
44
+ for line in fp:
45
+ labels_list.append(line[:-1])
46
+
47
+ colormap = np.asarray(ade_palette())
48
+
49
+ def label_to_color_image(label):
50
+ if label.ndim != 2:
51
+ raise ValueError("Expect 2-D input label")
52
 
53
+ if np.max(label) >= len(colormap):
54
+ raise ValueError("label value too large.")
55
+ return colormap[label]
56
 
57
+ def draw_plot(pred_img, seg):
58
+ fig = plt.figure(figsize=(20, 15))
59
+
60
+ grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1])
61
+
62
+ plt.subplot(grid_spec[0])
63
+ plt.imshow(pred_img)
64
+ plt.axis('off')
65
+ LABEL_NAMES = np.asarray(labels_list)
66
+ FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1)
67
+ FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP)
68
+
69
+ unique_labels = np.unique(seg.numpy().astype("uint8"))
70
+ ax = plt.subplot(grid_spec[1])
71
+ plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest")
72
+ ax.yaxis.tick_right()
73
+ plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels])
74
+ plt.xticks([], [])
75
+ ax.tick_params(width=0.0, labelsize=25)
76
+ return fig
77
+
78
+ def sepia(input_img):
79
+ input_img = Image.fromarray(input_img)
80
+
81
+ inputs = feature_extractor(images=input_img, return_tensors="tf")
82
  outputs = model(**inputs)
83
  logits = outputs.logits
84
 
85
+ logits = tf.transpose(logits, [0, 2, 3, 1])
86
+ logits = tf.image.resize(
87
+ logits, input_img.size[::-1]
88
+ ) # We reverse the shape of `image` because `image.size` returns width and height.
89
+ seg = tf.math.argmax(logits, axis=-1)[0]
90
+
91
+ color_seg = np.zeros(
92
+ (seg.shape[0], seg.shape[1], 3), dtype=np.uint8
93
+ ) # height, width, 3
94
+ for label, color in enumerate(colormap):
95
+ color_seg[seg.numpy() == label, :] = color
96
+
97
+ # Show image + mask
98
+ pred_img = np.array(input_img) * 0.5 + color_seg * 0.5
99
+ pred_img = pred_img.astype(np.uint8)
100
+
101
+ fig = draw_plot(pred_img, seg)
102
+ return fig
103
+
104
+ demo = gr.Interface(fn=sepia,
105
+ inputs=gr.Image(shape=(400, 600)),
106
+ outputs=['plot'],
107
+ examples=["image1", "image2", "image3"],
108
+ allow_flagging='never')
109
+
110
 
111
+ demo.launch()