JiminHeo's picture
util
c429825
raw
history blame
10.3 kB
import torch
import numpy as np
import os
import pickle
from ldm.util import default
import glob
import PIL
import matplotlib.pyplot as plt
def load_file(filename):
with open(filename , 'rb') as file:
x = pickle.load(file)
return x
def save_file(filename, x, mode="wb"):
with open(filename, mode) as file:
pickle.dump(x, file)
def normalize_np(img):
""" Normalize img in arbitrary range to [0, 1] """
img -= np.min(img)
img /= np.max(img)
return img
def clear_color(x):
if torch.is_complex(x):
x = torch.abs(x)
x = x.detach().cpu().squeeze().numpy()
return normalize_np(np.transpose(x, (1, 2, 0)))
def to_img(sample):
return (sample.detach().cpu().numpy().transpose(0,2,3,1) * 127.5 + 128).clip(0, 255)
def save_plot(dir_name, tensors, labels, file_name="loss.png"):
t = np.linspace(0, len(tensors[0]), len(tensors[0]))
colours = ["r", "b", "g"]
plt.figure()
for j in range(len(tensors)):
plt.plot(t, tensors[j],color = colours[j], label = labels[j])
plt.legend()
plt.savefig(os.path.join(dir_name, file_name))
#plt.show()
def save_samples(dir_name, sample, k=None, num_to_save = 5, file_name = None):
if type(sample) is not np.ndarray: sample_np = to_img(sample).astype(np.uint8)
else: sample_np = sample.astype(np.uint8)
for j in range(num_to_save):
if file_name is None:
if k is not None: file_name_img = f'sample_{k+1}'f'{j}.png'
else: file_name_img = f'{j}.png'
else: file_name_img = file_name
image_path = os.path.join(dir_name,file_name_img)
image_np = sample_np[j]
PIL.Image.fromarray(image_np, 'RGB').save(image_path)
file_name_img = None
def save_inpaintings(dir_name, sample, y, mask_pixel, k=None, num_to_save = 5, file_name = None):
recon_in = y*(mask_pixel) + ( 1-mask_pixel)*sample
recon_in = to_img(recon_in)
for j in range(num_to_save):
if file_name is None:
if k is not None: file_name_img = f'sample_{k+1}'f'{j}.png'
else: file_name_img = f'{j}.png'
else: file_name_img = file_name
image_path = os.path.join(dir_name, file_name_img)
image_np = recon_in.astype(np.uint8)[j]
PIL.Image.fromarray(image_np, 'RGB').save(image_path)
file_name_img = None
def save_params(dir_name, mu_pos, logvar_pos, gamma,k):
params_to_fit = params_untrain([mu_pos.detach().cpu(), logvar_pos.detach().cpu(), gamma.detach().cpu()])
params_path = os.path.join(dir_name, f'{k+1}.pt')
torch.save(params_to_fit, params_path)
def custom_to_np(img):
sample = img.detach().cpu()
#sample = ((sample + 1) * 127.5).clamp(0, 255).to(torch.uint8)
#sample = sample.permute(0, 2, 3, 1)
sample = sample.contiguous()
return sample
def encoder_kl(diff, img):
_, params = diff.encode_first_stage(img, return_all = True)
params = diff.scale_factor * params
mean, logvar = torch.chunk(params, 2, dim=1)
noise = default(None, lambda: torch.randn_like(mean))
mean = mean + diff.scale_factor*noise
return mean, logvar
def encoder_vq(diff, img):
quant = diff.encode_first_stage(img) #, diff, (_,_,ind)
quant = diff.scale_factor * quant
#mean, logvar = torch.chunk(params, 2, dim=1)
noise = default(None, lambda: torch.randn_like(quant))
mean = quant + diff.scale_factor*noise #
return mean
def clean_directory(dir_name):
files = glob.glob(dir_name)
for f in files:
os.remove(f)
def params_train( params ):
for item in params:
item.requires_grad = True
return params
def params_untrain(params):
for item in params:
item.requires_grad = False
return params
def time_descretization(sigma_min=0.002, sigma_max = 80, rho = 7, num_t_steps = 18):
step_indices = torch.arange(num_t_steps, dtype=torch.float64).cuda()
t_steps = (sigma_max ** (1 / rho) + step_indices / (num_t_steps - 1) * (sigma_min ** (1 / rho) - sigma_max ** (1 / rho))) ** rho
inv_idx = torch.arange(num_t_steps -1, -1, -1).long()
t_steps_fwd = t_steps[inv_idx]
#t_steps = torch.cat([net.round_sigma(t_steps), torch.zeros_like(t_steps[:1])]) # t_N = 0
return t_steps_fwd
def get_optimizers(means, variances, gamma_param, lr_init_gamma=0.01) :
[lr, step_size, gamma] = [0.1, 10, 0.99] #was 0.999 for right-half: [0.01, 10, 0.99]
optimizer = torch.optim.Adam([means], lr=lr, betas=(0.9, 0.99))
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=step_size, gamma=gamma)
optimizer_2 = torch.optim.Adam([variances], lr=0.001, betas=(0.9, 0.99)) #0.001 for lsun
optimizer_3 = torch.optim.Adam([gamma_param], lr=lr_init_gamma, betas=(0.9, 0.99)) #0.01
scheduler_2 = torch.optim.lr_scheduler.StepLR(optimizer_2, step_size=step_size, gamma=gamma) ##added this
scheduler_3 = torch.optim.lr_scheduler.StepLR(optimizer_3, step_size=step_size, gamma=gamma)
return [optimizer, optimizer_2, optimizer_3 ], [scheduler, scheduler_2, scheduler_3]
def check_directory(filename_list):
for filename in filename_list:
if not os.path.exists(filename):
os.mkdir(filename)
def s_file(filename, x, mode="wb"):
with open(filename, mode) as file:
pickle.dump(x, file)
def r_file(filename, mode="rb"):
with open(filename, mode) as file:
x = pickle.load(file)
return x
def sample_from_gaussian(mu, alpha, sigma):
noise = torch.randn_like(mu)
return alpha*mu + sigma * noise
'''
def make_batch(image, mask=None, device=None):
image = torch.permute(image, (0,3,1,2))
batch_size = image.shape[0]
if mask is None :
mask = torch.zeros_like(image)
mask[0, :, :256, :128] = 1
else :
mask = torch.tensor(mask)
masked_image = (mask)*image #+ mask*noise*0.2
mask = mask[:,0,:,:].reshape(batch_size,1,image.shape[2], image.shape[3])
batch = {"image": image, "mask": mask, "masked_image": masked_image}
for k in batch:
batch[k] = batch[k].to(device)
return batch
def get_sigma_t_steps(net, n_steps=3, kwargs=None):
sigma_min = kwargs["sigma_min"]
sigma_max = kwargs["sigma_max"]
sigma_min = max(sigma_min, net.sigma_min)
sigma_max = min(sigma_max, net.sigma_max)
##Get the time-steps based on iddpm discretization
num_steps = n_steps #11 # kwargs["num_steps"]
C_2 = kwargs["C_2"]
C_1 = kwargs["C_1"]
M = kwargs["M"]
step_indices = torch.arange(num_steps, dtype=torch.float64).cuda()
u = torch.zeros(M + 1, dtype=torch.float64).cuda()
alpha_bar = lambda j: (0.5 * np.pi * j / M / (C_2 + 1)).sin() ** 2
for j in torch.arange(M, 0, -1, device=step_indices.device): # M, ..., 1
u[j - 1] = ((u[j] ** 2 + 1) / (alpha_bar(j - 1) / alpha_bar(j)).clip(min=C_1) - 1).sqrt()
u_filtered = u[torch.logical_and(u >= sigma_min, u <= sigma_max)]
sigma_steps = u_filtered[((len(u_filtered) - 1) / (num_steps - 1) * step_indices).round().to(torch.int64)]
#print(sigma_steps)
##get noise schedule
sigma = lambda t: t
sigma_deriv = lambda t: 1
sigma_inv = lambda sigma: sigma
##scaling schedule
s = lambda t: 1
s_deriv = lambda t: 0
##compute some final time steps based on the corresponding noise levels.
t_steps = sigma_inv(net.round_sigma(sigma_steps))
return t_steps, sigma_inv, sigma, s, sigma_deriv
def data_replicate(data, K):
if len(data.shape)==2: data_batch = torch.Tensor.repeat(data,[K,1])
else: data_batch = torch.Tensor.repeat(data,[K,1,1,1])
return data_batch
'''
def sample_T(self, x0, eta=0.4, t_steps_hierarchy=None):
'''
sigma_discretization_edm = time_descretization(sigma_min=0.002, sigma_max = 999, rho = 7, num_t_steps = 10)/1000
T_max = 1000
beta_start = 1 # 0.0015*T_max
beta_end = 15 # 0.0155*T_max
def var(t):
return 1.0 - (1.0) * torch.exp(- beta_start * t - 0.5 * (beta_end - beta_start) * t * t)
'''
t_steps_hierarchy = torch.tensor(t_steps_hierarchy).cuda()
var_t = (self.model.sqrt_one_minus_alphas_cumprod[t_steps_hierarchy[0]].reshape(1, 1 ,1 ,1))**2 # self.var(t_steps_hierarchy[0])
x_t = torch.sqrt(1 - var_t) * x0 + torch.sqrt(var_t) * torch.randn_like(x0)
os.makedirs("out_temp2/", exist_ok=True)
for i, t in enumerate(t_steps_hierarchy):
t_hat = torch.ones(10).cuda() * (t)
e_out = self.model.model(x_t, t_hat)
var_t = (self.model.sqrt_one_minus_alphas_cumprod[t].reshape(1, 1 ,1 ,1))**2
#score_out = - e_out / torch.sqrt()
a_t = 1 - var_t
#beta_t = 1 - a_t/a_prev
#std_pos = ((1 - a_prev)/(1 - a_t)).sqrt()*torch.sqrt(beta_t)
pred_x0 = (x_t - torch.sqrt(1 - a_t) * e_out) / a_t.sqrt()
if i != len(t_steps_hierarchy) - 1:
var_t1 = (self.model.sqrt_one_minus_alphas_cumprod[t_steps_hierarchy[i+1]].reshape(1, 1 ,1 ,1))**2
a_prev = 1 - var_t1 # var(t_steps_hierarchy[i+1]/1000) # torch.full((10, 1, 1, 1), alphas[t_steps_hierarchy[i+1]]).cuda()
sigma_t = eta * torch.sqrt((1 - a_prev) / (1 - a_t) * (1 - a_t / a_prev))
dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_out
x_t = a_prev.sqrt() * pred_x0 + dir_xt + torch.randn_like(x_t) * sigma_t + sigma_t*torch.randn_like(x_t)
#x_t= (x_t - torch.sqrt( 1 - a_t/a_prev) * e_out ) / (a_t/a_prev).sqrt() + std_pos*torch.randn_like(x_t)
'''
def pred_mean(pred_x0, z_t):
posterior_mean_coef1 = beta_t * torch.sqrt(a_prev) / (1. - a_t)
posterior_mean_coef2 = (1. - a_prev) * torch.sqrt(a_t/a_prev) / (1. - a_t)
return posterior_mean_coef1*pred_x0 + posterior_mean_coef2*z_t
x_t = torch.sqrt(a_prev) * pred_x0 # pred_mean(pred_x0, x_t) #+ 0.4*torch.sqrt(beta_t) *torch.randn_like(x_t)
'''
recon = self.model.decode_first_stage(pred_x0)
image_path = os.path.join("out_temp2/", f'{i}.png')
image_np = (recon.detach() * 127.5 + 128).clip(0, 255).to(torch.uint8).permute(0, 2, 3, 1).cpu().numpy()[0]
PIL.Image.fromarray(image_np, 'RGB').save(image_path)
return