Spaces:
Sleeping
Sleeping
File size: 10,251 Bytes
c429825 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
import torch
import numpy as np
import os
import pickle
from ldm.util import default
import glob
import PIL
import matplotlib.pyplot as plt
def load_file(filename):
with open(filename , 'rb') as file:
x = pickle.load(file)
return x
def save_file(filename, x, mode="wb"):
with open(filename, mode) as file:
pickle.dump(x, file)
def normalize_np(img):
""" Normalize img in arbitrary range to [0, 1] """
img -= np.min(img)
img /= np.max(img)
return img
def clear_color(x):
if torch.is_complex(x):
x = torch.abs(x)
x = x.detach().cpu().squeeze().numpy()
return normalize_np(np.transpose(x, (1, 2, 0)))
def to_img(sample):
return (sample.detach().cpu().numpy().transpose(0,2,3,1) * 127.5 + 128).clip(0, 255)
def save_plot(dir_name, tensors, labels, file_name="loss.png"):
t = np.linspace(0, len(tensors[0]), len(tensors[0]))
colours = ["r", "b", "g"]
plt.figure()
for j in range(len(tensors)):
plt.plot(t, tensors[j],color = colours[j], label = labels[j])
plt.legend()
plt.savefig(os.path.join(dir_name, file_name))
#plt.show()
def save_samples(dir_name, sample, k=None, num_to_save = 5, file_name = None):
if type(sample) is not np.ndarray: sample_np = to_img(sample).astype(np.uint8)
else: sample_np = sample.astype(np.uint8)
for j in range(num_to_save):
if file_name is None:
if k is not None: file_name_img = f'sample_{k+1}'f'{j}.png'
else: file_name_img = f'{j}.png'
else: file_name_img = file_name
image_path = os.path.join(dir_name,file_name_img)
image_np = sample_np[j]
PIL.Image.fromarray(image_np, 'RGB').save(image_path)
file_name_img = None
def save_inpaintings(dir_name, sample, y, mask_pixel, k=None, num_to_save = 5, file_name = None):
recon_in = y*(mask_pixel) + ( 1-mask_pixel)*sample
recon_in = to_img(recon_in)
for j in range(num_to_save):
if file_name is None:
if k is not None: file_name_img = f'sample_{k+1}'f'{j}.png'
else: file_name_img = f'{j}.png'
else: file_name_img = file_name
image_path = os.path.join(dir_name, file_name_img)
image_np = recon_in.astype(np.uint8)[j]
PIL.Image.fromarray(image_np, 'RGB').save(image_path)
file_name_img = None
def save_params(dir_name, mu_pos, logvar_pos, gamma,k):
params_to_fit = params_untrain([mu_pos.detach().cpu(), logvar_pos.detach().cpu(), gamma.detach().cpu()])
params_path = os.path.join(dir_name, f'{k+1}.pt')
torch.save(params_to_fit, params_path)
def custom_to_np(img):
sample = img.detach().cpu()
#sample = ((sample + 1) * 127.5).clamp(0, 255).to(torch.uint8)
#sample = sample.permute(0, 2, 3, 1)
sample = sample.contiguous()
return sample
def encoder_kl(diff, img):
_, params = diff.encode_first_stage(img, return_all = True)
params = diff.scale_factor * params
mean, logvar = torch.chunk(params, 2, dim=1)
noise = default(None, lambda: torch.randn_like(mean))
mean = mean + diff.scale_factor*noise
return mean, logvar
def encoder_vq(diff, img):
quant = diff.encode_first_stage(img) #, diff, (_,_,ind)
quant = diff.scale_factor * quant
#mean, logvar = torch.chunk(params, 2, dim=1)
noise = default(None, lambda: torch.randn_like(quant))
mean = quant + diff.scale_factor*noise #
return mean
def clean_directory(dir_name):
files = glob.glob(dir_name)
for f in files:
os.remove(f)
def params_train( params ):
for item in params:
item.requires_grad = True
return params
def params_untrain(params):
for item in params:
item.requires_grad = False
return params
def time_descretization(sigma_min=0.002, sigma_max = 80, rho = 7, num_t_steps = 18):
step_indices = torch.arange(num_t_steps, dtype=torch.float64).cuda()
t_steps = (sigma_max ** (1 / rho) + step_indices / (num_t_steps - 1) * (sigma_min ** (1 / rho) - sigma_max ** (1 / rho))) ** rho
inv_idx = torch.arange(num_t_steps -1, -1, -1).long()
t_steps_fwd = t_steps[inv_idx]
#t_steps = torch.cat([net.round_sigma(t_steps), torch.zeros_like(t_steps[:1])]) # t_N = 0
return t_steps_fwd
def get_optimizers(means, variances, gamma_param, lr_init_gamma=0.01) :
[lr, step_size, gamma] = [0.1, 10, 0.99] #was 0.999 for right-half: [0.01, 10, 0.99]
optimizer = torch.optim.Adam([means], lr=lr, betas=(0.9, 0.99))
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=step_size, gamma=gamma)
optimizer_2 = torch.optim.Adam([variances], lr=0.001, betas=(0.9, 0.99)) #0.001 for lsun
optimizer_3 = torch.optim.Adam([gamma_param], lr=lr_init_gamma, betas=(0.9, 0.99)) #0.01
scheduler_2 = torch.optim.lr_scheduler.StepLR(optimizer_2, step_size=step_size, gamma=gamma) ##added this
scheduler_3 = torch.optim.lr_scheduler.StepLR(optimizer_3, step_size=step_size, gamma=gamma)
return [optimizer, optimizer_2, optimizer_3 ], [scheduler, scheduler_2, scheduler_3]
def check_directory(filename_list):
for filename in filename_list:
if not os.path.exists(filename):
os.mkdir(filename)
def s_file(filename, x, mode="wb"):
with open(filename, mode) as file:
pickle.dump(x, file)
def r_file(filename, mode="rb"):
with open(filename, mode) as file:
x = pickle.load(file)
return x
def sample_from_gaussian(mu, alpha, sigma):
noise = torch.randn_like(mu)
return alpha*mu + sigma * noise
'''
def make_batch(image, mask=None, device=None):
image = torch.permute(image, (0,3,1,2))
batch_size = image.shape[0]
if mask is None :
mask = torch.zeros_like(image)
mask[0, :, :256, :128] = 1
else :
mask = torch.tensor(mask)
masked_image = (mask)*image #+ mask*noise*0.2
mask = mask[:,0,:,:].reshape(batch_size,1,image.shape[2], image.shape[3])
batch = {"image": image, "mask": mask, "masked_image": masked_image}
for k in batch:
batch[k] = batch[k].to(device)
return batch
def get_sigma_t_steps(net, n_steps=3, kwargs=None):
sigma_min = kwargs["sigma_min"]
sigma_max = kwargs["sigma_max"]
sigma_min = max(sigma_min, net.sigma_min)
sigma_max = min(sigma_max, net.sigma_max)
##Get the time-steps based on iddpm discretization
num_steps = n_steps #11 # kwargs["num_steps"]
C_2 = kwargs["C_2"]
C_1 = kwargs["C_1"]
M = kwargs["M"]
step_indices = torch.arange(num_steps, dtype=torch.float64).cuda()
u = torch.zeros(M + 1, dtype=torch.float64).cuda()
alpha_bar = lambda j: (0.5 * np.pi * j / M / (C_2 + 1)).sin() ** 2
for j in torch.arange(M, 0, -1, device=step_indices.device): # M, ..., 1
u[j - 1] = ((u[j] ** 2 + 1) / (alpha_bar(j - 1) / alpha_bar(j)).clip(min=C_1) - 1).sqrt()
u_filtered = u[torch.logical_and(u >= sigma_min, u <= sigma_max)]
sigma_steps = u_filtered[((len(u_filtered) - 1) / (num_steps - 1) * step_indices).round().to(torch.int64)]
#print(sigma_steps)
##get noise schedule
sigma = lambda t: t
sigma_deriv = lambda t: 1
sigma_inv = lambda sigma: sigma
##scaling schedule
s = lambda t: 1
s_deriv = lambda t: 0
##compute some final time steps based on the corresponding noise levels.
t_steps = sigma_inv(net.round_sigma(sigma_steps))
return t_steps, sigma_inv, sigma, s, sigma_deriv
def data_replicate(data, K):
if len(data.shape)==2: data_batch = torch.Tensor.repeat(data,[K,1])
else: data_batch = torch.Tensor.repeat(data,[K,1,1,1])
return data_batch
'''
def sample_T(self, x0, eta=0.4, t_steps_hierarchy=None):
'''
sigma_discretization_edm = time_descretization(sigma_min=0.002, sigma_max = 999, rho = 7, num_t_steps = 10)/1000
T_max = 1000
beta_start = 1 # 0.0015*T_max
beta_end = 15 # 0.0155*T_max
def var(t):
return 1.0 - (1.0) * torch.exp(- beta_start * t - 0.5 * (beta_end - beta_start) * t * t)
'''
t_steps_hierarchy = torch.tensor(t_steps_hierarchy).cuda()
var_t = (self.model.sqrt_one_minus_alphas_cumprod[t_steps_hierarchy[0]].reshape(1, 1 ,1 ,1))**2 # self.var(t_steps_hierarchy[0])
x_t = torch.sqrt(1 - var_t) * x0 + torch.sqrt(var_t) * torch.randn_like(x0)
os.makedirs("out_temp2/", exist_ok=True)
for i, t in enumerate(t_steps_hierarchy):
t_hat = torch.ones(10).cuda() * (t)
e_out = self.model.model(x_t, t_hat)
var_t = (self.model.sqrt_one_minus_alphas_cumprod[t].reshape(1, 1 ,1 ,1))**2
#score_out = - e_out / torch.sqrt()
a_t = 1 - var_t
#beta_t = 1 - a_t/a_prev
#std_pos = ((1 - a_prev)/(1 - a_t)).sqrt()*torch.sqrt(beta_t)
pred_x0 = (x_t - torch.sqrt(1 - a_t) * e_out) / a_t.sqrt()
if i != len(t_steps_hierarchy) - 1:
var_t1 = (self.model.sqrt_one_minus_alphas_cumprod[t_steps_hierarchy[i+1]].reshape(1, 1 ,1 ,1))**2
a_prev = 1 - var_t1 # var(t_steps_hierarchy[i+1]/1000) # torch.full((10, 1, 1, 1), alphas[t_steps_hierarchy[i+1]]).cuda()
sigma_t = eta * torch.sqrt((1 - a_prev) / (1 - a_t) * (1 - a_t / a_prev))
dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_out
x_t = a_prev.sqrt() * pred_x0 + dir_xt + torch.randn_like(x_t) * sigma_t + sigma_t*torch.randn_like(x_t)
#x_t= (x_t - torch.sqrt( 1 - a_t/a_prev) * e_out ) / (a_t/a_prev).sqrt() + std_pos*torch.randn_like(x_t)
'''
def pred_mean(pred_x0, z_t):
posterior_mean_coef1 = beta_t * torch.sqrt(a_prev) / (1. - a_t)
posterior_mean_coef2 = (1. - a_prev) * torch.sqrt(a_t/a_prev) / (1. - a_t)
return posterior_mean_coef1*pred_x0 + posterior_mean_coef2*z_t
x_t = torch.sqrt(a_prev) * pred_x0 # pred_mean(pred_x0, x_t) #+ 0.4*torch.sqrt(beta_t) *torch.randn_like(x_t)
'''
recon = self.model.decode_first_stage(pred_x0)
image_path = os.path.join("out_temp2/", f'{i}.png')
image_np = (recon.detach() * 127.5 + 128).clip(0, 255).to(torch.uint8).permute(0, 2, 3, 1).cpu().numpy()[0]
PIL.Image.fromarray(image_np, 'RGB').save(image_path)
return
|