Spaces:
Runtime error
Runtime error
File size: 9,071 Bytes
221b17d 5052ae3 221b17d 5052ae3 d4c6110 5052ae3 221b17d 5052ae3 221b17d 5052ae3 221b17d 5052ae3 221b17d 5052ae3 221b17d 5052ae3 221b17d 5052ae3 221b17d 5052ae3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
# -*- coding: utf-8 -*-
# 財政部財政資訊中心 江信宗
# pip install langchain transformers langchain-groq chromadb langchain-community langchain-huggingface gradio
import os
from dotenv import load_dotenv
load_dotenv()
os.environ["LANGCHAIN_COMMUNITY__USER_AGENT"] = "Taiwan_Tax_KB (Colab)"
from langchain_community.utils import user_agent
from langchain_groq import ChatGroq
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_community.vectorstores import Chroma
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain.chains import RetrievalQA
from langchain_community.document_loaders import WebBaseLoader, TextLoader
from langchain.prompts import PromptTemplate
from langchain.schema import Document
import gradio as gr
def initialize_llm(api_key):
os.environ["GROQ_API_KEY"] = api_key
return ChatGroq(
groq_api_key=api_key,
model_name='llama-3.1-70b-versatile'
)
print(f"成功初始化 ChatGroq 模型")
def load_documents(sources):
documents = []
for source in sources:
try:
if isinstance(source, str):
if source.startswith('http'):
loader = WebBaseLoader(source)
else:
loader = TextLoader(source)
documents.extend(loader.load())
elif isinstance(source, dict):
documents.append(Document(page_content=source['content'], metadata=source.get('metadata', {})))
except Exception as e:
print(f"Error loading source {source}: {str(e)}")
return documents
sources = [
"TaxQADataSet_ntpc.txt",
"TaxQADataSet_kctax.txt",
"TaxQADataSet_chutax.txt",
"HouseTaxAct1130103.txt",
"VehicleLicenseTaxAct1101230.txt",
"TaxCollectionAct1101217.txt",
"LandTaxAct1100623.txt",
"AmusementTaxAct960523.txt",
"StampTaxAct910515.txt",
"DeedTaxAct990505.txt",
"ProgressiveHouseTaxRates1130701.txt"
]
documents = load_documents(sources)
print(f"成功載入 {len(documents)} 個網址或檔案")
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=512,
chunk_overlap=50,
length_function=len,
separators=["\n\n\n","\n\n", "\n", "。"]
)
split_docs = text_splitter.split_documents(documents)
print(f"分割後的文檔數量:{len(split_docs)}")
embeddings = HuggingFaceEmbeddings(model_name="BAAI/bge-large-zh-v1.5")
print(f"\n成功初始化嵌入模型")
vectorstore = Chroma.from_documents(split_docs, embeddings, persist_directory="./Knowledge-base")
print(f"成功建立 Chroma 向量資料庫")
retriever = vectorstore.as_retriever()
template = """Let's work this out in a step by step way to be sure we have the right answer. Must reply to me in Taiwanese Traditional Chinese.
在回答之前,請仔細分析檢索到的上下文,確保你的回答準確完整反映了上下文中的訊息,而不是依賴先前的知識,但在回應答案中不要提到是根據上下文回答。
如果檢索到的多個上下文之間存在聯繫,請整合這些訊息以提供全面的回答,但要避免過度推斷。
如果檢索到的上下文不包含足夠回答問題的訊息,請誠實的說明,不要試圖編造答案。
上下文: {context}
問題: {question}
答案:"""
PROMPT = PromptTemplate(
template=template, input_variables=["context", "question"]
)
print(f"成功定義 Prompt Template")
def create_chain(llm):
return RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=retriever,
return_source_documents=True,
chain_type_kwargs={"prompt": PROMPT}
)
print(f"成功建立 RAG Chain")
def generate_insight_questions(answer, api_key):
llm = initialize_llm(api_key)
prompt = f"""
根據以下回答,生成3個相關的洞見問題:
回答: {answer}
請提供3個簡短但有深度的問題,這些問題應該:
1. 與原始回答緊密相關
2. 能夠引導更深入的討論
3. 涵蓋不同的方面或角度
請直接列出這3個問題,每個問題一行,不要添加編號或其他文字。
"""
try:
response = llm.invoke(prompt)
if hasattr(response, 'content'):
questions = response.content.split('\n')
else:
questions = str(response).split('\n')
while len(questions) < 3:
questions.append("需要更多資訊嗎?")
return questions[:3]
except Exception as e:
print(f"Error generating insight questions: {str(e)}")
return ["需要更多資訊嗎?", "有其他問題嗎?", "還有什麼想了解的嗎?"]
def answer_question(query, api_key):
try:
llm = initialize_llm(api_key)
chain = create_chain(llm)
result = chain({"query": query})
answer = result["result"]
insight_questions = generate_insight_questions(answer, api_key)
while len(insight_questions) < 3:
insight_questions.append("需要更多資訊嗎?")
return answer, insight_questions[:3]
except Exception as e:
return f"抱歉,處理您的問題時發生錯誤:{str(e)}", []
def handle_interaction(query, api_key, state):
if state is None:
state = {"history": []}
answer, insight_questions = answer_question(query, api_key)
state["history"].append((query, answer))
insight_questions = [q if q.strip() else "需要更多資訊" for q in insight_questions]
return answer, insight_questions[0], insight_questions[1], insight_questions[2], state, query
custom_css = """
body {
background-color: #e8f5e9;
}
#answer-box textarea, #query-input textarea {
font-size: 18px !important;
background-color: #ffffff;
border: 1px solid #81c784;
border-radius: 8px;
}
.center-text {
text-align: center !important;
color: #2e7d32 !important;
}
.gradio-container {
background-color: #c8e6c9 !important;
border-radius: 15px !important;
padding: 20px !important;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1) !important;
}
.gr-button {
color: white !important;
border: none !important;
border-radius: 20px !important;
transition: all 0.3s ease !important;
font-weight: bold !important;
}
.gr-button:hover {
transform: translateY(-2px) !important;
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.2) !important;
}
#submit-btn {
background-color: #ff4081 !important;
}
#submit-btn:hover {
background-color: #f50057 !important;
}
.insight-btn {
background-color: #00bcd4 !important;
}
.insight-btn:hover {
background-color: #00acc1 !important;
}
.gr-form {
background-color: #e8f5e9 !important;
padding: 15px !important;
border-radius: 10px !important;
}
"""
with gr.Blocks(theme=gr.themes.Monochrome(), css=custom_css) as iface:
gr.Markdown("# 地方稅知識庫系統 - 財政部財政資訊中心", elem_classes=["center-text"])
gr.Markdown("※ RAG-based Q&A Web系統,建置:江信宗,LLM:Llama-3.1-70B,目前僅示範地方稅各稅目問答。", elem_classes=["center-text"])
with gr.Row():
query_input = gr.Textbox(lines=2, placeholder="請輸入您的問題...", label="輸入您的問題,系統將基於學習到的知識資料提供相關答案。", elem_id="query-input")
api_key_input = gr.Textbox(type="password", placeholder="請輸入您的 API Key", label="API authentication key for large language models")
answer_output = gr.Textbox(lines=6, label="答案:", elem_id="answer-box")
with gr.Row():
insight_q1 = gr.Button("洞見問題 1", visible=False, elem_classes=["insight-btn"])
insight_q2 = gr.Button("洞見問題 2", visible=False, elem_classes=["insight-btn"])
insight_q3 = gr.Button("洞見問題 3", visible=False, elem_classes=["insight-btn"])
state = gr.State()
current_question = gr.Textbox(lines=2, label="當前問題", visible=False)
submit_btn = gr.Button("提交", elem_id="submit-btn")
def update_ui(answer, q1, q2, q3, state, current_q):
return [
answer,
gr.update(value=q1, visible=bool(q1)),
gr.update(value=q2, visible=bool(q2)),
gr.update(value=q3, visible=bool(q3)),
state,
current_q
]
submit_btn.click(
fn=handle_interaction,
inputs=[query_input, api_key_input, state],
outputs=[answer_output, insight_q1, insight_q2, insight_q3, state, current_question]
).then(
fn=update_ui,
inputs=[answer_output, insight_q1, insight_q2, insight_q3, state, current_question],
outputs=[answer_output, insight_q1, insight_q2, insight_q3, state, current_question]
)
for btn in [insight_q1, insight_q2, insight_q3]:
btn.click(
lambda x: x,
inputs=[btn],
outputs=[query_input]
)
if __name__ == "__main__":
iface.launch(share=True, debug=True)
|