File size: 6,978 Bytes
0a6a466
f2d6ac6
0a6a466
f2d6ac6
0a6a466
 
 
 
f2d6ac6
0a6a466
f2d6ac6
 
0a6a466
c92c8f7
9c89ed0
c92c8f7
 
9c89ed0
c92c8f7
0a6a466
c92c8f7
0a6a466
 
 
f52b5b1
0a6a466
 
 
 
9c89ed0
0a6a466
9c89ed0
0a6a466
9c89ed0
0a6a466
 
 
 
9c89ed0
 
0a6a466
 
9c89ed0
0a6a466
 
9c89ed0
0a6a466
 
 
 
c92c8f7
0a6a466
 
 
 
c92c8f7
 
0a6a466
 
 
 
 
9c89ed0
f2d6ac6
0a6a466
f2d6ac6
 
9c89ed0
 
f2d6ac6
0a6a466
9c89ed0
f2d6ac6
c92c8f7
 
 
 
 
f2d6ac6
9c89ed0
 
 
 
c92c8f7
9c89ed0
c92c8f7
9c89ed0
c92c8f7
 
 
 
0a6a466
9c89ed0
0a6a466
f2d6ac6
b32bd6a
7173d5d
9c89ed0
7173d5d
f2d6ac6
 
 
 
 
 
 
 
9c89ed0
f2d6ac6
9c89ed0
c92c8f7
 
9c89ed0
 
 
7173d5d
c92c8f7
7173d5d
c92c8f7
 
 
0a6a466
c92c8f7
9c89ed0
 
 
c92c8f7
 
 
 
f2d6ac6
0a6a466
9c89ed0
0a6a466
 
 
7173d5d
0a6a466
fbcd34b
 
c92c8f7
0a6a466
9c89ed0
c92c8f7
 
9c89ed0
 
 
f2d6ac6
 
c92c8f7
9c89ed0
 
 
c92c8f7
 
9c89ed0
 
 
 
 
c92c8f7
9c89ed0
c92c8f7
 
9c89ed0
 
f2d6ac6
c92c8f7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
# app.py ──────────────────────────────────────────────────────────────────────
from datasets import load_dataset
import gradio as gr, json, os, random, torch, spaces
from diffusers import FluxPipeline, AutoencoderKL
from gradio_client import Client
from live_preview_helpers import (
    flux_pipe_call_that_returns_an_iterable_of_images as flux_iter,
)

# ─────────────────────────── 1.  Device ─────────────────────────────────────
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# ────────────────────── 2.  FLUX image pipeline ─────────────────────────────
pipe = FluxPipeline.from_pretrained(
    "black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16
).to(device)
good_vae = AutoencoderKL.from_pretrained(
    "black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=torch.bfloat16
).to(device)
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_iter.__get__(pipe)

# ───────────────────────── 3.  LLM client (robust) ──────────────────────────
LLM_SPACES = [
    "https://huggingfaceh4-zephyr-chat.hf.space",
    "meta-llama/Llama-3.3-70B-Instruct",
    "huggingface-projects/gemma-2-9b-it",
]

def first_live_space(space_ids: list[str]) -> Client:
    """
    Return the first Space whose /chat endpoint answers a 1-token echo.
    """
    for sid in space_ids:
        try:
            print(f"[info] probing {sid}")
            c = Client(sid, hf_token=os.getenv("HF_TOKEN"))
            _ = c.predict("ping", 8, api_name="/chat")  # simple health check
            print(f"[info] using {sid}")
            return c
        except Exception as e:
            print(f"[warn] {sid} unusable β†’ {e}")
    raise RuntimeError("No live chat Space found!")

llm_client = first_live_space(LLM_SPACES)
CHAT_API   = "/chat"  # universal endpoint for TGI-style Spaces

def call_llm(prompt: str,
             max_tokens: int = 256,
             temperature: float = 0.6,
             top_p: float = 0.9) -> str:
    """
    Send a single-message chat to the Space. Extra sliders in the remote UI must
    be supplied in positional order after the prompt, so we match Zephyr/Gemma:
        [prompt, max_tokens, temperature, top_p, repeat_penalty, presence_penalty]
    We pass only the first four; the Space will fill the rest with defaults.
    """
    try:
        return llm_client.predict(
            prompt, max_tokens, temperature, top_p, api_name=CHAT_API
        ).strip()
    except Exception as exc:
        print(f"[error] LLM failure β†’ {exc}")
        return "…"

# ──────────────────────── 4.  Persona dataset ──────────────────────────────
ds = load_dataset("MohamedRashad/FinePersonas-Lite", split="train")

def random_persona() -> str:
    return ds[random.randint(0, len(ds) - 1)]["persona"]

# ─────────────────────────── 5.  Text prompts ───────────────────────────────
PROMPT_TEMPLATE = """Generate a character with this persona description:

{persona_description}

In a world with this description:

{world_description}

Write the character in JSON with keys:
name, background, appearance, personality, skills_and_abilities,
goals, conflicts, backstory, current_situation,
spoken_lines (list of strings).

Respond with JSON only (no markdown)."""

WORLD_PROMPT = (
    "Invent a short, unique and vivid world description. "
    "Respond with the description only."
)

# ───────────────────────── 6.  Helper functions ─────────────────────────────
def random_world() -> str:
    return call_llm(WORLD_PROMPT, max_tokens=120)

@spaces.GPU(duration=75)
def infer_flux(character_json):
    for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
        prompt=character_json["appearance"],
        guidance_scale=3.5,
        num_inference_steps=28,
        width=1024,
        height=1024,
        generator=torch.Generator("cpu").manual_seed(0),
        output_type="pil",
        good_vae=good_vae,
    ):
        yield img

def generate_character(world_desc: str, persona_desc: str,
                       progress=gr.Progress(track_tqdm=True)):
    raw = call_llm(
        PROMPT_TEMPLATE.format(
            persona_description=persona_desc,
            world_description=world_desc,
        ),
        max_tokens=1024,
    )
    try:
        return json.loads(raw)
    except json.JSONDecodeError:
        # retry once if the model didn’t return valid JSON
        raw = call_llm(
            PROMPT_TEMPLATE.format(
                persona_description=persona_desc,
                world_description=world_desc,
            ),
            max_tokens=1024,
        )
        return json.loads(raw)

# ─────────────────────────── 7.  Gradio UI ──────────────────────────────────
DESCRIPTION = """
* Generates a JSON character sheet from a world + persona.
* Appearance images via **FLUX-dev**; story text via Zephyr-chat or Gemma fallback.
* Personas sampled from **FinePersonas-Lite**.

Tip β†’ Shuffle the world then persona for rapid inspiration.
"""

with gr.Blocks(title="Character Generator", theme="Nymbo/Nymbo_Theme") as demo:
    gr.Markdown("<h1 style='text-align:center'>πŸ§β€β™‚οΈ Character Generator</h1>")
    gr.Markdown(DESCRIPTION.strip())

    with gr.Row():
        world_tb = gr.Textbox(label="World Description", lines=10, scale=4)
        persona_tb = gr.Textbox(
            label="Persona Description", value=random_persona(), lines=10, scale=1
        )

    with gr.Row():
        btn_world   = gr.Button("πŸ”„ Random World",   variant="secondary")
        btn_generate = gr.Button("✨ Generate Character", variant="primary", scale=5)
        btn_persona = gr.Button("πŸ”„ Random Persona", variant="secondary")

    with gr.Row():
        img_out  = gr.Image(label="Character Image")
        json_out = gr.JSON(label="Character Description")

    btn_generate.click(
        generate_character, [world_tb, persona_tb], [json_out]
    ).then(
        infer_flux, [json_out], [img_out]
    )

    btn_world.click(random_world, outputs=[world_tb])
    btn_persona.click(random_persona, outputs=[persona_tb])

demo.queue().launch(share=False)