Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,87 +1,74 @@
|
|
|
|
1 |
from datasets import load_dataset
|
2 |
-
import gradio as gr
|
3 |
-
from gradio_client import Client
|
4 |
-
import json, os, random, torch, spaces
|
5 |
from diffusers import FluxPipeline, AutoencoderKL
|
6 |
-
from
|
|
|
|
|
|
|
7 |
|
8 |
-
#
|
9 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
10 |
|
11 |
-
#
|
12 |
pipe = FluxPipeline.from_pretrained(
|
13 |
"black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16
|
14 |
).to(device)
|
15 |
good_vae = AutoencoderKL.from_pretrained(
|
16 |
"black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=torch.bfloat16
|
17 |
).to(device)
|
18 |
-
pipe.flux_pipe_call_that_returns_an_iterable_of_images = (
|
19 |
-
flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
|
20 |
-
)
|
21 |
|
22 |
-
# βββββββββββββββββββββββββ 3. LLM client (robust)
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
"""
|
25 |
-
|
26 |
"""
|
27 |
-
for
|
28 |
try:
|
29 |
-
print(f"[info]
|
30 |
-
c = Client(
|
31 |
-
|
32 |
-
|
33 |
-
print(f"[info] Selected LLM Space: {src}")
|
34 |
return c
|
35 |
except Exception as e:
|
36 |
-
print(f"[warn] {
|
37 |
-
raise RuntimeError("No
|
38 |
|
39 |
-
|
40 |
-
|
41 |
-
"HuggingFaceH4/zephyr-chat", # repo slug
|
42 |
-
"huggingface-projects/gemma-2-9b-it", # fallback Space
|
43 |
-
]
|
44 |
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
user_prompt: str,
|
50 |
-
system_prompt: str = "You are a helpful creative assistant.",
|
51 |
-
history: list | None = None,
|
52 |
-
temperature: float = 0.7,
|
53 |
-
top_p: float = 0.9,
|
54 |
-
max_tokens: int = 1024,
|
55 |
-
) -> str:
|
56 |
"""
|
57 |
-
|
|
|
|
|
|
|
58 |
"""
|
59 |
-
history = history or []
|
60 |
try:
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
top_p,
|
67 |
-
max_tokens,
|
68 |
-
api_name=CHAT_API,
|
69 |
-
)
|
70 |
-
# Some Spaces return string, some return (β¦, history) tuple
|
71 |
-
if isinstance(result, str):
|
72 |
-
return result.strip()
|
73 |
-
return result[1][0][-1].strip()
|
74 |
-
except Exception as e:
|
75 |
-
print(f"[error] LLM call failed β {e}")
|
76 |
return "β¦"
|
77 |
|
78 |
-
#
|
79 |
ds = load_dataset("MohamedRashad/FinePersonas-Lite", split="train")
|
80 |
|
81 |
def random_persona() -> str:
|
82 |
return ds[random.randint(0, len(ds) - 1)]["persona"]
|
83 |
|
84 |
-
# βββββββββββββββββββββββββββ 5.
|
85 |
PROMPT_TEMPLATE = """Generate a character with this persona description:
|
86 |
|
87 |
{persona_description}
|
@@ -102,9 +89,9 @@ WORLD_PROMPT = (
|
|
102 |
"Respond with the description only."
|
103 |
)
|
104 |
|
105 |
-
#
|
106 |
def random_world() -> str:
|
107 |
-
return call_llm(WORLD_PROMPT)
|
108 |
|
109 |
@spaces.GPU(duration=75)
|
110 |
def infer_flux(character_json):
|
@@ -132,7 +119,7 @@ def generate_character(world_desc: str, persona_desc: str,
|
|
132 |
try:
|
133 |
return json.loads(raw)
|
134 |
except json.JSONDecodeError:
|
135 |
-
#
|
136 |
raw = call_llm(
|
137 |
PROMPT_TEMPLATE.format(
|
138 |
persona_description=persona_desc,
|
@@ -142,17 +129,17 @@ def generate_character(world_desc: str, persona_desc: str,
|
|
142 |
)
|
143 |
return json.loads(raw)
|
144 |
|
145 |
-
#
|
146 |
DESCRIPTION = """
|
147 |
-
* Generates a character sheet
|
148 |
-
* Appearance images via **FLUX-dev**;
|
149 |
-
* Personas
|
150 |
|
151 |
-
Tip β
|
152 |
"""
|
153 |
|
154 |
with gr.Blocks(title="Character Generator", theme="Nymbo/Nymbo_Theme") as demo:
|
155 |
-
gr.Markdown("<h1 style='text-align:center'
|
156 |
gr.Markdown(DESCRIPTION.strip())
|
157 |
|
158 |
with gr.Row():
|
@@ -180,4 +167,3 @@ with gr.Blocks(title="Character Generator", theme="Nymbo/Nymbo_Theme") as demo:
|
|
180 |
btn_persona.click(random_persona, outputs=[persona_tb])
|
181 |
|
182 |
demo.queue().launch(share=False)
|
183 |
-
|
|
|
1 |
+
# app.py ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
2 |
from datasets import load_dataset
|
3 |
+
import gradio as gr, json, os, random, torch, spaces
|
|
|
|
|
4 |
from diffusers import FluxPipeline, AutoencoderKL
|
5 |
+
from gradio_client import Client
|
6 |
+
from live_preview_helpers import (
|
7 |
+
flux_pipe_call_that_returns_an_iterable_of_images as flux_iter,
|
8 |
+
)
|
9 |
|
10 |
+
# βββββββββββββββββββββββββββ 1. Device βββββββββββββββββββββββββββββββββββββ
|
11 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
12 |
|
13 |
+
# ββββββββββββββββββββββ 2. FLUX image pipeline βββββββββββββββββββββββββββββ
|
14 |
pipe = FluxPipeline.from_pretrained(
|
15 |
"black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16
|
16 |
).to(device)
|
17 |
good_vae = AutoencoderKL.from_pretrained(
|
18 |
"black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=torch.bfloat16
|
19 |
).to(device)
|
20 |
+
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_iter.__get__(pipe)
|
|
|
|
|
21 |
|
22 |
+
# βββββββββββββββββββββββββ 3. LLM client (robust) ββββββββββββββββββββββββββ
|
23 |
+
LLM_SPACES = [
|
24 |
+
"https://huggingfaceh4-zephyr-chat.hf.space",
|
25 |
+
"HuggingFaceH4/zephyr-chat",
|
26 |
+
"huggingface-projects/gemma-2-9b-it",
|
27 |
+
]
|
28 |
+
|
29 |
+
def first_live_space(space_ids: list[str]) -> Client:
|
30 |
"""
|
31 |
+
Return the first Space whose /chat endpoint answers a 1-token echo.
|
32 |
"""
|
33 |
+
for sid in space_ids:
|
34 |
try:
|
35 |
+
print(f"[info] probing {sid}")
|
36 |
+
c = Client(sid, hf_token=os.getenv("HF_TOKEN"))
|
37 |
+
_ = c.predict("ping", 8, api_name="/chat") # simple health check
|
38 |
+
print(f"[info] using {sid}")
|
|
|
39 |
return c
|
40 |
except Exception as e:
|
41 |
+
print(f"[warn] {sid} unusable β {e}")
|
42 |
+
raise RuntimeError("No live chat Space found!")
|
43 |
|
44 |
+
llm_client = first_live_space(LLM_SPACES)
|
45 |
+
CHAT_API = "/chat" # universal endpoint for TGI-style Spaces
|
|
|
|
|
|
|
46 |
|
47 |
+
def call_llm(prompt: str,
|
48 |
+
max_tokens: int = 256,
|
49 |
+
temperature: float = 0.6,
|
50 |
+
top_p: float = 0.9) -> str:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
"""
|
52 |
+
Send a single-message chat to the Space. Extra sliders in the remote UI must
|
53 |
+
be supplied in positional order after the prompt, so we match Zephyr/Gemma:
|
54 |
+
[prompt, max_tokens, temperature, top_p, repeat_penalty, presence_penalty]
|
55 |
+
We pass only the first four; the Space will fill the rest with defaults.
|
56 |
"""
|
|
|
57 |
try:
|
58 |
+
return llm_client.predict(
|
59 |
+
prompt, max_tokens, temperature, top_p, api_name=CHAT_API
|
60 |
+
).strip()
|
61 |
+
except Exception as exc:
|
62 |
+
print(f"[error] LLM failure β {exc}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
return "β¦"
|
64 |
|
65 |
+
# ββββββββββββββββββββββββ 4. Persona dataset ββββββββββββββββββββββββββββββ
|
66 |
ds = load_dataset("MohamedRashad/FinePersonas-Lite", split="train")
|
67 |
|
68 |
def random_persona() -> str:
|
69 |
return ds[random.randint(0, len(ds) - 1)]["persona"]
|
70 |
|
71 |
+
# βββββββββββββββββββββββββββ 5. Text prompts βββββββββββββββββββββββββββββββ
|
72 |
PROMPT_TEMPLATE = """Generate a character with this persona description:
|
73 |
|
74 |
{persona_description}
|
|
|
89 |
"Respond with the description only."
|
90 |
)
|
91 |
|
92 |
+
# βββββββββββββββββββββββββ 6. Helper functions βββββββββββββββββββββββββββββ
|
93 |
def random_world() -> str:
|
94 |
+
return call_llm(WORLD_PROMPT, max_tokens=120)
|
95 |
|
96 |
@spaces.GPU(duration=75)
|
97 |
def infer_flux(character_json):
|
|
|
119 |
try:
|
120 |
return json.loads(raw)
|
121 |
except json.JSONDecodeError:
|
122 |
+
# retry once if the model didnβt return valid JSON
|
123 |
raw = call_llm(
|
124 |
PROMPT_TEMPLATE.format(
|
125 |
persona_description=persona_desc,
|
|
|
129 |
)
|
130 |
return json.loads(raw)
|
131 |
|
132 |
+
# βββββββββββββββββββββββββββ 7. Gradio UI ββββββββββββββββββββββββββββββββββ
|
133 |
DESCRIPTION = """
|
134 |
+
* Generates a JSON character sheet from a world + persona.
|
135 |
+
* Appearance images via **FLUX-dev**; story text via Zephyr-chat or Gemma fallback.
|
136 |
+
* Personas sampled from **FinePersonas-Lite**.
|
137 |
|
138 |
+
Tip β Shuffle the world then persona for rapid inspiration.
|
139 |
"""
|
140 |
|
141 |
with gr.Blocks(title="Character Generator", theme="Nymbo/Nymbo_Theme") as demo:
|
142 |
+
gr.Markdown("<h1 style='text-align:center'>π§ββοΈ Character Generator</h1>")
|
143 |
gr.Markdown(DESCRIPTION.strip())
|
144 |
|
145 |
with gr.Row():
|
|
|
167 |
btn_persona.click(random_persona, outputs=[persona_tb])
|
168 |
|
169 |
demo.queue().launch(share=False)
|
|