File size: 5,896 Bytes
745adc6
 
f2d6ac6
0a6a466
f2d6ac6
0a6a466
 
 
 
f2d6ac6
745adc6
f2d6ac6
 
745adc6
c92c8f7
9c89ed0
c92c8f7
 
9c89ed0
c92c8f7
0a6a466
c92c8f7
745adc6
0a6a466
 
f52b5b1
0a6a466
 
 
 
 
9c89ed0
0a6a466
 
745adc6
0a6a466
9c89ed0
 
0a6a466
 
9c89ed0
0a6a466
745adc6
9c89ed0
0a6a466
 
 
 
c92c8f7
0a6a466
 
 
 
 
9c89ed0
f2d6ac6
745adc6
f2d6ac6
 
9c89ed0
 
f2d6ac6
745adc6
9c89ed0
c92c8f7
 
 
9c89ed0
 
 
 
 
c92c8f7
9c89ed0
c92c8f7
 
 
 
745adc6
9c89ed0
0a6a466
f2d6ac6
745adc6
 
 
 
 
 
 
 
 
b32bd6a
7173d5d
745adc6
 
 
 
9c89ed0
7173d5d
f2d6ac6
 
 
 
 
 
 
 
9c89ed0
f2d6ac6
9c89ed0
c92c8f7
745adc6
c92c8f7
9c89ed0
 
 
7173d5d
c92c8f7
7173d5d
745adc6
 
 
f2d6ac6
745adc6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c89ed0
0a6a466
 
 
 
fbcd34b
 
c92c8f7
0a6a466
9c89ed0
c92c8f7
 
9c89ed0
 
 
f2d6ac6
 
c92c8f7
9c89ed0
 
 
c92c8f7
 
9c89ed0
 
 
 
 
c92c8f7
9c89ed0
c92c8f7
 
9c89ed0
 
f2d6ac6
c92c8f7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
# app.py β€” Robust Character Generator Space

from datasets import load_dataset
import gradio as gr, json, os, random, torch, spaces
from diffusers import FluxPipeline, AutoencoderKL
from gradio_client import Client
from live_preview_helpers import (
    flux_pipe_call_that_returns_an_iterable_of_images as flux_iter,
)

# 1. Device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# 2. FLUX image pipeline
pipe = FluxPipeline.from_pretrained(
    "black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16
).to(device)
good_vae = AutoencoderKL.from_pretrained(
    "black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=torch.bfloat16
).to(device)
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_iter.__get__(pipe)

# 3. LLM client (robust)
LLM_SPACES = [
    "https://huggingfaceh4-zephyr-chat.hf.space",
    "meta-llama/Llama-3.3-70B-Instruct",
    "huggingface-projects/gemma-2-9b-it",
]

def first_live_space(space_ids: list[str]) -> Client:
    for sid in space_ids:
        try:
            print(f"[info] probing {sid}")
            c = Client(sid, hf_token=os.getenv("HF_TOKEN"))
            _ = c.predict("ping", 8, api_name="/chat")
            print(f"[info] using {sid}")
            return c
        except Exception as e:
            print(f"[warn] {sid} unusable β†’ {e}")
    raise RuntimeError("No live chat Space found!")

llm_client = first_live_space(LLM_SPACES)
CHAT_API = "/chat"

def call_llm(prompt: str,
             max_tokens: int = 256,
             temperature: float = 0.6,
             top_p: float = 0.9) -> str:
    try:
        return llm_client.predict(
            prompt, max_tokens, temperature, top_p, api_name=CHAT_API
        ).strip()
    except Exception as exc:
        print(f"[error] LLM failure β†’ {exc}")
        return "…"

# 4. Persona dataset
ds = load_dataset("MohamedRashad/FinePersonas-Lite", split="train")

def random_persona() -> str:
    return ds[random.randint(0, len(ds) - 1)]["persona"]

# 5. Text prompts
PROMPT_TEMPLATE = """Generate a character with this persona description:
{persona_description}
In a world with this description:
{world_description}
Write the character in JSON with keys:
name, background, appearance, personality, skills_and_abilities,
goals, conflicts, backstory, current_situation,
spoken_lines (list of strings).
Respond with JSON only (no markdown)."""

WORLD_PROMPT = (
    "Invent a short, unique and vivid world description. "
    "Respond with the description only."
)

# 6. Helper functions
def random_world() -> str:
    return call_llm(WORLD_PROMPT, max_tokens=120)

def safe_json_parse(raw):
    """Try to parse JSON, return None if fail, and log."""
    try:
        return json.loads(raw)
    except Exception as e:
        print(f"[ERROR] JSON parsing failed: {e}")
        print(f"[DEBUG] Raw output: {raw[:1000]}")
        return None

@spaces.GPU(duration=75)
def infer_flux(character_json):
    # Defensive: If not a dict or missing appearance, bail out
    if not isinstance(character_json, dict) or "appearance" not in character_json:
        print("[ERROR] No valid appearance to generate image.")
        return None
    for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
        prompt=character_json["appearance"],
        guidance_scale=3.5,
        num_inference_steps=28,
        width=1024,
        height=1024,
        generator=torch.Generator("cpu").manual_seed(0),
        output_type="pil",
        good_vae=good_vae,
    ):
        yield img

def generate_character(world_desc: str, persona_desc: str,
                       progress=gr.Progress(track_tqdm=True)):
    # First attempt
    raw = call_llm(
        PROMPT_TEMPLATE.format(
            persona_description=persona_desc,
            world_description=world_desc,
        ),
        max_tokens=1024,
    )
    character = safe_json_parse(raw)
    if character:
        return character

    # Retry once
    raw2 = call_llm(
        PROMPT_TEMPLATE.format(
            persona_description=persona_desc,
            world_description=world_desc,
        ),
        max_tokens=1024,
    )
    character2 = safe_json_parse(raw2)
    if character2:
        return character2

    # If both fail, return error and raw outputs for debugging
    return {
        "error": "LLM did not return valid JSON after 2 attempts.",
        "first_raw": raw,
        "second_raw": raw2,
        "tip": "Check your LLM prompt and output. Try regenerating.",
    }

# 7. Gradio UI
DESCRIPTION = """
* Generates a JSON character sheet from a world + persona.
* Appearance images via **FLUX-dev**; story text via Zephyr-chat or Gemma fallback.
* Personas sampled from **FinePersonas-Lite**.
Tip β†’ Shuffle the world then persona for rapid inspiration.
"""

with gr.Blocks(title="Character Generator", theme="Nymbo/Nymbo_Theme") as demo:
    gr.Markdown("<h1 style='text-align:center'>πŸ§β€β™‚οΈ Character Generator</h1>")
    gr.Markdown(DESCRIPTION.strip())

    with gr.Row():
        world_tb = gr.Textbox(label="World Description", lines=10, scale=4)
        persona_tb = gr.Textbox(
            label="Persona Description", value=random_persona(), lines=10, scale=1
        )

    with gr.Row():
        btn_world   = gr.Button("πŸ”„ Random World",   variant="secondary")
        btn_generate = gr.Button("✨ Generate Character", variant="primary", scale=5)
        btn_persona = gr.Button("πŸ”„ Random Persona", variant="secondary")

    with gr.Row():
        img_out  = gr.Image(label="Character Image")
        json_out = gr.JSON(label="Character Description")

    btn_generate.click(
        generate_character, [world_tb, persona_tb], [json_out]
    ).then(
        infer_flux, [json_out], [img_out]
    )

    btn_world.click(random_world, outputs=[world_tb])
    btn_persona.click(random_persona, outputs=[persona_tb])

demo.queue().launch(share=False)