Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,896 Bytes
745adc6 f2d6ac6 0a6a466 f2d6ac6 0a6a466 f2d6ac6 745adc6 f2d6ac6 745adc6 c92c8f7 9c89ed0 c92c8f7 9c89ed0 c92c8f7 0a6a466 c92c8f7 745adc6 0a6a466 f52b5b1 0a6a466 9c89ed0 0a6a466 745adc6 0a6a466 9c89ed0 0a6a466 9c89ed0 0a6a466 745adc6 9c89ed0 0a6a466 c92c8f7 0a6a466 9c89ed0 f2d6ac6 745adc6 f2d6ac6 9c89ed0 f2d6ac6 745adc6 9c89ed0 c92c8f7 9c89ed0 c92c8f7 9c89ed0 c92c8f7 745adc6 9c89ed0 0a6a466 f2d6ac6 745adc6 b32bd6a 7173d5d 745adc6 9c89ed0 7173d5d f2d6ac6 9c89ed0 f2d6ac6 9c89ed0 c92c8f7 745adc6 c92c8f7 9c89ed0 7173d5d c92c8f7 7173d5d 745adc6 f2d6ac6 745adc6 9c89ed0 0a6a466 fbcd34b c92c8f7 0a6a466 9c89ed0 c92c8f7 9c89ed0 f2d6ac6 c92c8f7 9c89ed0 c92c8f7 9c89ed0 c92c8f7 9c89ed0 c92c8f7 9c89ed0 f2d6ac6 c92c8f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
# app.py β Robust Character Generator Space
from datasets import load_dataset
import gradio as gr, json, os, random, torch, spaces
from diffusers import FluxPipeline, AutoencoderKL
from gradio_client import Client
from live_preview_helpers import (
flux_pipe_call_that_returns_an_iterable_of_images as flux_iter,
)
# 1. Device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# 2. FLUX image pipeline
pipe = FluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16
).to(device)
good_vae = AutoencoderKL.from_pretrained(
"black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=torch.bfloat16
).to(device)
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_iter.__get__(pipe)
# 3. LLM client (robust)
LLM_SPACES = [
"https://huggingfaceh4-zephyr-chat.hf.space",
"meta-llama/Llama-3.3-70B-Instruct",
"huggingface-projects/gemma-2-9b-it",
]
def first_live_space(space_ids: list[str]) -> Client:
for sid in space_ids:
try:
print(f"[info] probing {sid}")
c = Client(sid, hf_token=os.getenv("HF_TOKEN"))
_ = c.predict("ping", 8, api_name="/chat")
print(f"[info] using {sid}")
return c
except Exception as e:
print(f"[warn] {sid} unusable β {e}")
raise RuntimeError("No live chat Space found!")
llm_client = first_live_space(LLM_SPACES)
CHAT_API = "/chat"
def call_llm(prompt: str,
max_tokens: int = 256,
temperature: float = 0.6,
top_p: float = 0.9) -> str:
try:
return llm_client.predict(
prompt, max_tokens, temperature, top_p, api_name=CHAT_API
).strip()
except Exception as exc:
print(f"[error] LLM failure β {exc}")
return "β¦"
# 4. Persona dataset
ds = load_dataset("MohamedRashad/FinePersonas-Lite", split="train")
def random_persona() -> str:
return ds[random.randint(0, len(ds) - 1)]["persona"]
# 5. Text prompts
PROMPT_TEMPLATE = """Generate a character with this persona description:
{persona_description}
In a world with this description:
{world_description}
Write the character in JSON with keys:
name, background, appearance, personality, skills_and_abilities,
goals, conflicts, backstory, current_situation,
spoken_lines (list of strings).
Respond with JSON only (no markdown)."""
WORLD_PROMPT = (
"Invent a short, unique and vivid world description. "
"Respond with the description only."
)
# 6. Helper functions
def random_world() -> str:
return call_llm(WORLD_PROMPT, max_tokens=120)
def safe_json_parse(raw):
"""Try to parse JSON, return None if fail, and log."""
try:
return json.loads(raw)
except Exception as e:
print(f"[ERROR] JSON parsing failed: {e}")
print(f"[DEBUG] Raw output: {raw[:1000]}")
return None
@spaces.GPU(duration=75)
def infer_flux(character_json):
# Defensive: If not a dict or missing appearance, bail out
if not isinstance(character_json, dict) or "appearance" not in character_json:
print("[ERROR] No valid appearance to generate image.")
return None
for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
prompt=character_json["appearance"],
guidance_scale=3.5,
num_inference_steps=28,
width=1024,
height=1024,
generator=torch.Generator("cpu").manual_seed(0),
output_type="pil",
good_vae=good_vae,
):
yield img
def generate_character(world_desc: str, persona_desc: str,
progress=gr.Progress(track_tqdm=True)):
# First attempt
raw = call_llm(
PROMPT_TEMPLATE.format(
persona_description=persona_desc,
world_description=world_desc,
),
max_tokens=1024,
)
character = safe_json_parse(raw)
if character:
return character
# Retry once
raw2 = call_llm(
PROMPT_TEMPLATE.format(
persona_description=persona_desc,
world_description=world_desc,
),
max_tokens=1024,
)
character2 = safe_json_parse(raw2)
if character2:
return character2
# If both fail, return error and raw outputs for debugging
return {
"error": "LLM did not return valid JSON after 2 attempts.",
"first_raw": raw,
"second_raw": raw2,
"tip": "Check your LLM prompt and output. Try regenerating.",
}
# 7. Gradio UI
DESCRIPTION = """
* Generates a JSON character sheet from a world + persona.
* Appearance images via **FLUX-dev**; story text via Zephyr-chat or Gemma fallback.
* Personas sampled from **FinePersonas-Lite**.
Tip β Shuffle the world then persona for rapid inspiration.
"""
with gr.Blocks(title="Character Generator", theme="Nymbo/Nymbo_Theme") as demo:
gr.Markdown("<h1 style='text-align:center'>π§ββοΈ Character Generator</h1>")
gr.Markdown(DESCRIPTION.strip())
with gr.Row():
world_tb = gr.Textbox(label="World Description", lines=10, scale=4)
persona_tb = gr.Textbox(
label="Persona Description", value=random_persona(), lines=10, scale=1
)
with gr.Row():
btn_world = gr.Button("π Random World", variant="secondary")
btn_generate = gr.Button("β¨ Generate Character", variant="primary", scale=5)
btn_persona = gr.Button("π Random Persona", variant="secondary")
with gr.Row():
img_out = gr.Image(label="Character Image")
json_out = gr.JSON(label="Character Description")
btn_generate.click(
generate_character, [world_tb, persona_tb], [json_out]
).then(
infer_flux, [json_out], [img_out]
)
btn_world.click(random_world, outputs=[world_tb])
btn_persona.click(random_persona, outputs=[persona_tb])
demo.queue().launch(share=False)
|