Spaces:
Sleeping
Sleeping
from fastapi import APIRouter | |
from datetime import datetime | |
from datasets import load_dataset | |
from sklearn.feature_extraction.text import TfidfVectorizer | |
from sklearn.naive_bayes import MultinomialNB | |
from sklearn.svm import SVC | |
from sklearn.metrics import accuracy_score | |
from .utils.evaluation import TextEvaluationRequest | |
from .utils.emissions import tracker, clean_emissions_data, get_space_info | |
# Define the router for text tasks | |
router = APIRouter() | |
DESCRIPTION_NAIVE_BAYES = "Naive Bayes Text Classifier" | |
DESCRIPTION_SVM = "SVM Text Classifier with TF-IDF" | |
# Naive Bayes Endpoint | |
async def evaluate_text(request: TextEvaluationRequest): | |
""" | |
Evaluate text classification using Naive Bayes. | |
""" | |
username, space_url = get_space_info() | |
# Label Mapping | |
LABEL_MAPPING = { | |
"0_not_relevant": 0, | |
"1_not_happening": 1, | |
"2_not_human": 2, | |
"3_not_bad": 3, | |
"4_solutions_harmful_unnecessary": 4, | |
"5_science_unreliable": 5, | |
"6_proponents_biased": 6, | |
"7_fossil_fuels_needed": 7 | |
} | |
# Load and prepare dataset | |
dataset = load_dataset(request.dataset_name) | |
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]}) | |
# Train-Test Split | |
train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed) | |
train_texts = [x["text"] for x in train_test["train"]] | |
train_labels = [x["label"] for x in train_test["train"]] | |
test_texts = [x["text"] for x in train_test["test"]] | |
test_labels = [x["label"] for x in train_test["test"]] | |
# TF-IDF Vectorization | |
vectorizer = TfidfVectorizer(max_features=5000) | |
train_vectors = vectorizer.fit_transform(train_texts) | |
test_vectors = vectorizer.transform(test_texts) | |
# Train Naive Bayes Classifier | |
model = MultinomialNB() | |
model.fit(train_vectors, train_labels) | |
# Track emissions | |
tracker.start() | |
tracker.start_task("inference") | |
predictions = model.predict(test_vectors) | |
emissions_data = tracker.stop_task() | |
# Calculate Accuracy | |
accuracy = accuracy_score(test_labels, predictions) | |
return { | |
"username": username, | |
"space_url": space_url, | |
"submission_timestamp": datetime.now().isoformat(), | |
"model_description": DESCRIPTION_NAIVE_BAYES, | |
"accuracy": float(accuracy), | |
"energy_consumed_wh": emissions_data.energy_consumed * 1000, | |
"emissions_gco2eq": emissions_data.emissions * 1000, | |
"emissions_data": clean_emissions_data(emissions_data), | |
"api_route": "/text", | |
"dataset_config": { | |
"dataset_name": request.dataset_name, | |
"test_size": request.test_size, | |
"test_seed": request.test_seed | |
} | |
} | |
# SVM Endpoint | |
async def evaluate_text_svm(request: TextEvaluationRequest): | |
""" | |
Evaluate text classification using SVM. | |
""" | |
username, space_url = get_space_info() | |
# Label Mapping | |
LABEL_MAPPING = { | |
"0_not_relevant": 0, | |
"1_not_happening": 1, | |
"2_not_human": 2, | |
"3_not_bad": 3, | |
"4_solutions_harmful_unnecessary": 4, | |
"5_science_unreliable": 5, | |
"6_proponents_biased": 6, | |
"7_fossil_fuels_needed": 7 | |
} | |
# Load and prepare dataset | |
dataset = load_dataset(request.dataset_name) | |
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]}) | |
# Train-Test Split | |
train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed) | |
train_texts = [x["text"] for x in train_test["train"]] | |
train_labels = [x["label"] for x in train_test["train"]] | |
test_texts = [x["text"] for x in train_test["test"]] | |
test_labels = [x["label"] for x in train_test["test"]] | |
# TF-IDF Vectorization | |
vectorizer = TfidfVectorizer(max_features=5000) | |
train_vectors = vectorizer.fit_transform(train_texts) | |
test_vectors = vectorizer.transform(test_texts) | |
# Train SVM Classifier | |
model = SVC(kernel="linear", probability=True) | |
model.fit(train_vectors, train_labels) | |
# Track emissions | |
tracker.start() | |
tracker.start_task("inference") | |
predictions = model.predict(test_vectors) | |
emissions_data = tracker.stop_task() | |
# Calculate Accuracy | |
accuracy = accuracy_score(test_labels, predictions) | |
return { | |
"username": username, | |
"space_url": space_url, | |
"submission_timestamp": datetime.now().isoformat(), | |
"model_description": DESCRIPTION_SVM, | |
"accuracy": float(accuracy), | |
"energy_consumed_wh": emissions_data.energy_consumed * 1000, | |
"emissions_gco2eq": emissions_data.emissions * 1000, | |
"emissions_data": clean_emissions_data(emissions_data), | |
"api_route": "/text_svm", | |
"dataset_config": { | |
"dataset_name": request.dataset_name, | |
"test_size": request.test_size, | |
"test_seed": request.test_seed | |
} | |
} | |