Spaces:
Sleeping
Sleeping
Update tasks/text.py
Browse files- tasks/text.py +85 -35
tasks/text.py
CHANGED
@@ -2,31 +2,28 @@ from fastapi import APIRouter
|
|
2 |
from datetime import datetime
|
3 |
from datasets import load_dataset
|
4 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
|
|
5 |
from sklearn.svm import SVC
|
6 |
from sklearn.metrics import accuracy_score
|
7 |
|
8 |
from .utils.evaluation import TextEvaluationRequest
|
9 |
from .utils.emissions import tracker, clean_emissions_data, get_space_info
|
10 |
|
|
|
11 |
router = APIRouter()
|
12 |
|
13 |
-
|
14 |
-
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
async def
|
19 |
"""
|
20 |
-
Evaluate text classification
|
21 |
-
|
22 |
-
Current Model: SVM Classifier
|
23 |
-
- Uses TF-IDF for text vectorization
|
24 |
-
- Trains and evaluates a Support Vector Machine (SVM) model
|
25 |
"""
|
26 |
-
# Get space info
|
27 |
username, space_url = get_space_info()
|
28 |
|
29 |
-
#
|
30 |
LABEL_MAPPING = {
|
31 |
"0_not_relevant": 0,
|
32 |
"1_not_happening": 1,
|
@@ -38,22 +35,82 @@ async def evaluate_text_svm(request: TextEvaluationRequest):
|
|
38 |
"7_fossil_fuels_needed": 7
|
39 |
}
|
40 |
|
41 |
-
# Load and prepare
|
42 |
dataset = load_dataset(request.dataset_name)
|
43 |
-
|
44 |
-
# Convert string labels to integers
|
45 |
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})
|
46 |
|
47 |
-
# Split
|
48 |
train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed)
|
49 |
-
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
-
#
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
# TF-IDF Vectorization
|
59 |
vectorizer = TfidfVectorizer(max_features=5000)
|
@@ -64,35 +121,28 @@ async def evaluate_text_svm(request: TextEvaluationRequest):
|
|
64 |
model = SVC(kernel="linear", probability=True)
|
65 |
model.fit(train_vectors, train_labels)
|
66 |
|
67 |
-
#
|
68 |
tracker.start()
|
69 |
tracker.start_task("inference")
|
70 |
-
|
71 |
-
# Inference
|
72 |
predictions = model.predict(test_vectors)
|
73 |
-
|
74 |
-
# Stop tracking emissions
|
75 |
emissions_data = tracker.stop_task()
|
76 |
|
77 |
-
# Calculate
|
78 |
accuracy = accuracy_score(test_labels, predictions)
|
79 |
|
80 |
-
|
81 |
-
results = {
|
82 |
"username": username,
|
83 |
"space_url": space_url,
|
84 |
"submission_timestamp": datetime.now().isoformat(),
|
85 |
-
"model_description":
|
86 |
"accuracy": float(accuracy),
|
87 |
"energy_consumed_wh": emissions_data.energy_consumed * 1000,
|
88 |
"emissions_gco2eq": emissions_data.emissions * 1000,
|
89 |
"emissions_data": clean_emissions_data(emissions_data),
|
90 |
-
"api_route":
|
91 |
"dataset_config": {
|
92 |
"dataset_name": request.dataset_name,
|
93 |
"test_size": request.test_size,
|
94 |
"test_seed": request.test_seed
|
95 |
}
|
96 |
}
|
97 |
-
|
98 |
-
return results
|
|
|
2 |
from datetime import datetime
|
3 |
from datasets import load_dataset
|
4 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
5 |
+
from sklearn.naive_bayes import MultinomialNB
|
6 |
from sklearn.svm import SVC
|
7 |
from sklearn.metrics import accuracy_score
|
8 |
|
9 |
from .utils.evaluation import TextEvaluationRequest
|
10 |
from .utils.emissions import tracker, clean_emissions_data, get_space_info
|
11 |
|
12 |
+
# Define the router for text tasks
|
13 |
router = APIRouter()
|
14 |
|
15 |
+
DESCRIPTION_NAIVE_BAYES = "Naive Bayes Text Classifier"
|
16 |
+
DESCRIPTION_SVM = "SVM Text Classifier with TF-IDF"
|
17 |
|
18 |
+
# Naive Bayes Endpoint
|
19 |
+
@router.post("/text", tags=["Text Task"], description=DESCRIPTION_NAIVE_BAYES)
|
20 |
+
async def evaluate_text(request: TextEvaluationRequest):
|
21 |
"""
|
22 |
+
Evaluate text classification using Naive Bayes.
|
|
|
|
|
|
|
|
|
23 |
"""
|
|
|
24 |
username, space_url = get_space_info()
|
25 |
|
26 |
+
# Label Mapping
|
27 |
LABEL_MAPPING = {
|
28 |
"0_not_relevant": 0,
|
29 |
"1_not_happening": 1,
|
|
|
35 |
"7_fossil_fuels_needed": 7
|
36 |
}
|
37 |
|
38 |
+
# Load and prepare dataset
|
39 |
dataset = load_dataset(request.dataset_name)
|
|
|
|
|
40 |
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})
|
41 |
|
42 |
+
# Train-Test Split
|
43 |
train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed)
|
44 |
+
train_texts = [x["text"] for x in train_test["train"]]
|
45 |
+
train_labels = [x["label"] for x in train_test["train"]]
|
46 |
+
test_texts = [x["text"] for x in train_test["test"]]
|
47 |
+
test_labels = [x["label"] for x in train_test["test"]]
|
48 |
+
|
49 |
+
# TF-IDF Vectorization
|
50 |
+
vectorizer = TfidfVectorizer(max_features=5000)
|
51 |
+
train_vectors = vectorizer.fit_transform(train_texts)
|
52 |
+
test_vectors = vectorizer.transform(test_texts)
|
53 |
+
|
54 |
+
# Train Naive Bayes Classifier
|
55 |
+
model = MultinomialNB()
|
56 |
+
model.fit(train_vectors, train_labels)
|
57 |
+
|
58 |
+
# Track emissions
|
59 |
+
tracker.start()
|
60 |
+
tracker.start_task("inference")
|
61 |
+
predictions = model.predict(test_vectors)
|
62 |
+
emissions_data = tracker.stop_task()
|
63 |
+
|
64 |
+
# Calculate Accuracy
|
65 |
+
accuracy = accuracy_score(test_labels, predictions)
|
66 |
+
|
67 |
+
return {
|
68 |
+
"username": username,
|
69 |
+
"space_url": space_url,
|
70 |
+
"submission_timestamp": datetime.now().isoformat(),
|
71 |
+
"model_description": DESCRIPTION_NAIVE_BAYES,
|
72 |
+
"accuracy": float(accuracy),
|
73 |
+
"energy_consumed_wh": emissions_data.energy_consumed * 1000,
|
74 |
+
"emissions_gco2eq": emissions_data.emissions * 1000,
|
75 |
+
"emissions_data": clean_emissions_data(emissions_data),
|
76 |
+
"api_route": "/text",
|
77 |
+
"dataset_config": {
|
78 |
+
"dataset_name": request.dataset_name,
|
79 |
+
"test_size": request.test_size,
|
80 |
+
"test_seed": request.test_seed
|
81 |
+
}
|
82 |
+
}
|
83 |
+
|
84 |
+
# SVM Endpoint
|
85 |
+
@router.post("/text_svm", tags=["Text Task"], description=DESCRIPTION_SVM)
|
86 |
+
async def evaluate_text_svm(request: TextEvaluationRequest):
|
87 |
+
"""
|
88 |
+
Evaluate text classification using SVM.
|
89 |
+
"""
|
90 |
+
username, space_url = get_space_info()
|
91 |
+
|
92 |
+
# Label Mapping
|
93 |
+
LABEL_MAPPING = {
|
94 |
+
"0_not_relevant": 0,
|
95 |
+
"1_not_happening": 1,
|
96 |
+
"2_not_human": 2,
|
97 |
+
"3_not_bad": 3,
|
98 |
+
"4_solutions_harmful_unnecessary": 4,
|
99 |
+
"5_science_unreliable": 5,
|
100 |
+
"6_proponents_biased": 6,
|
101 |
+
"7_fossil_fuels_needed": 7
|
102 |
+
}
|
103 |
|
104 |
+
# Load and prepare dataset
|
105 |
+
dataset = load_dataset(request.dataset_name)
|
106 |
+
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})
|
107 |
+
|
108 |
+
# Train-Test Split
|
109 |
+
train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed)
|
110 |
+
train_texts = [x["text"] for x in train_test["train"]]
|
111 |
+
train_labels = [x["label"] for x in train_test["train"]]
|
112 |
+
test_texts = [x["text"] for x in train_test["test"]]
|
113 |
+
test_labels = [x["label"] for x in train_test["test"]]
|
114 |
|
115 |
# TF-IDF Vectorization
|
116 |
vectorizer = TfidfVectorizer(max_features=5000)
|
|
|
121 |
model = SVC(kernel="linear", probability=True)
|
122 |
model.fit(train_vectors, train_labels)
|
123 |
|
124 |
+
# Track emissions
|
125 |
tracker.start()
|
126 |
tracker.start_task("inference")
|
|
|
|
|
127 |
predictions = model.predict(test_vectors)
|
|
|
|
|
128 |
emissions_data = tracker.stop_task()
|
129 |
|
130 |
+
# Calculate Accuracy
|
131 |
accuracy = accuracy_score(test_labels, predictions)
|
132 |
|
133 |
+
return {
|
|
|
134 |
"username": username,
|
135 |
"space_url": space_url,
|
136 |
"submission_timestamp": datetime.now().isoformat(),
|
137 |
+
"model_description": DESCRIPTION_SVM,
|
138 |
"accuracy": float(accuracy),
|
139 |
"energy_consumed_wh": emissions_data.energy_consumed * 1000,
|
140 |
"emissions_gco2eq": emissions_data.emissions * 1000,
|
141 |
"emissions_data": clean_emissions_data(emissions_data),
|
142 |
+
"api_route": "/text_svm",
|
143 |
"dataset_config": {
|
144 |
"dataset_name": request.dataset_name,
|
145 |
"test_size": request.test_size,
|
146 |
"test_seed": request.test_seed
|
147 |
}
|
148 |
}
|
|
|
|