JenetGhumman's picture
Update tasks/text.py
5d2f9b2 verified
raw
history blame
3.99 kB
from fastapi import APIRouter
from datetime import datetime
from datasets import load_dataset
from sklearn.metrics import accuracy_score
from transformers import DistilBertTokenizerFast, DistilBertForSequenceClassification
from transformers import Trainer, TrainingArguments
import torch
from .utils.evaluation import TextEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info
router = APIRouter()
DESCRIPTION = "DistilBERT Baseline"
ROUTE = "/text"
@router.post(ROUTE, tags=["Text Task"],
description=DESCRIPTION)
async def evaluate_text(request: TextEvaluationRequest):
"""
Evaluate text classification for climate disinformation detection.
Current Model: DistilBERT
- Fine-tunes and evaluates a DistilBERT model on the given dataset
"""
# Get space info
username, space_url = get_space_info()
# Define the label mapping
LABEL_MAPPING = {
"0_not_relevant": 0,
"1_not_happening": 1,
"2_not_human": 2,
"3_not_bad": 3,
"4_solutions_harmful_unnecessary": 4,
"5_science_unreliable": 5,
"6_proponents_biased": 6,
"7_fossil_fuels_needed": 7
}
# Load and prepare the dataset
dataset = load_dataset(request.dataset_name)
# Convert string labels to integers
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})
# Split dataset
train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed)
train_dataset = train_test["train"]
test_dataset = train_test["test"]
# Tokenizer and model
tokenizer = DistilBertTokenizerFast.from_pretrained("distilbert-base-uncased")
model = DistilBertForSequenceClassification.from_pretrained("distilbert-base-uncased", num_labels=8)
# Tokenize datasets
def preprocess(examples):
return tokenizer(examples["text"], truncation=True, padding=True, max_length=512)
train_dataset = train_dataset.map(preprocess, batched=True)
test_dataset = test_dataset.map(preprocess, batched=True)
train_dataset.set_format(type="torch", columns=["input_ids", "attention_mask", "label"])
test_dataset.set_format(type="torch", columns=["input_ids", "attention_mask", "label"])
# Training arguments
training_args = TrainingArguments(
output_dir="./results",
evaluation_strategy="epoch",
learning_rate=5e-5,
per_device_train_batch_size=16,
per_device_eval_batch_size=16,
num_train_epochs=3,
weight_decay=0.01,
logging_dir="./logs",
logging_steps=10,
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=test_dataset,
tokenizer=tokenizer,
)
# Start tracking emissions
tracker.start()
tracker.start_task("inference")
# Train and evaluate the model
trainer.train()
# Perform inference
predictions = trainer.predict(test_dataset).predictions
predictions = torch.argmax(torch.tensor(predictions), axis=1).tolist()
true_labels = test_dataset["label"]
# Stop tracking emissions
emissions_data = tracker.stop_task()
# Calculate accuracy
accuracy = accuracy_score(true_labels, predictions)
# Prepare results dictionary
results = {
"username": username,
"space_url": space_url,
"submission_timestamp": datetime.now().isoformat(),
"model_description": DESCRIPTION,
"accuracy": float(accuracy),
"energy_consumed_wh": emissions_data.energy_consumed * 1000,
"emissions_gco2eq": emissions_data.emissions * 1000,
"emissions_data": clean_emissions_data(emissions_data),
"api_route": ROUTE,
"dataset_config": {
"dataset_name": request.dataset_name,
"test_size": request.test_size,
"test_seed": request.test_seed
}
}
return results