File size: 3,994 Bytes
4d6e8c2
 
 
 
5d2f9b2
 
 
4d6e8c2
 
 
 
 
 
5d2f9b2
1c33274
70f5f26
1c33274
70f5f26
4d6e8c2
 
70f5f26
 
5d2f9b2
 
4d6e8c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d2f9b2
4d6e8c2
5d2f9b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d6e8c2
 
 
70f5f26
5d2f9b2
 
70f5f26
5d2f9b2
 
 
 
70f5f26
4d6e8c2
 
5d2f9b2
4d6e8c2
 
5d2f9b2
4d6e8c2
 
 
 
 
70f5f26
4d6e8c2
 
 
 
1c33274
4d6e8c2
 
 
 
 
 
 
5d2f9b2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
from fastapi import APIRouter
from datetime import datetime
from datasets import load_dataset
from sklearn.metrics import accuracy_score
from transformers import DistilBertTokenizerFast, DistilBertForSequenceClassification
from transformers import Trainer, TrainingArguments
import torch

from .utils.evaluation import TextEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info

router = APIRouter()

DESCRIPTION = "DistilBERT Baseline"
ROUTE = "/text"

@router.post(ROUTE, tags=["Text Task"], 
             description=DESCRIPTION)
async def evaluate_text(request: TextEvaluationRequest):
    """
    Evaluate text classification for climate disinformation detection.
    
    Current Model: DistilBERT
    - Fine-tunes and evaluates a DistilBERT model on the given dataset
    """
    # Get space info
    username, space_url = get_space_info()

    # Define the label mapping
    LABEL_MAPPING = {
        "0_not_relevant": 0,
        "1_not_happening": 1,
        "2_not_human": 2,
        "3_not_bad": 3,
        "4_solutions_harmful_unnecessary": 4,
        "5_science_unreliable": 5,
        "6_proponents_biased": 6,
        "7_fossil_fuels_needed": 7
    }

    # Load and prepare the dataset
    dataset = load_dataset(request.dataset_name)

    # Convert string labels to integers
    dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})

    # Split dataset
    train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed)
    train_dataset = train_test["train"]
    test_dataset = train_test["test"]

    # Tokenizer and model
    tokenizer = DistilBertTokenizerFast.from_pretrained("distilbert-base-uncased")
    model = DistilBertForSequenceClassification.from_pretrained("distilbert-base-uncased", num_labels=8)

    # Tokenize datasets
    def preprocess(examples):
        return tokenizer(examples["text"], truncation=True, padding=True, max_length=512)

    train_dataset = train_dataset.map(preprocess, batched=True)
    test_dataset = test_dataset.map(preprocess, batched=True)

    train_dataset.set_format(type="torch", columns=["input_ids", "attention_mask", "label"])
    test_dataset.set_format(type="torch", columns=["input_ids", "attention_mask", "label"])

    # Training arguments
    training_args = TrainingArguments(
        output_dir="./results",
        evaluation_strategy="epoch",
        learning_rate=5e-5,
        per_device_train_batch_size=16,
        per_device_eval_batch_size=16,
        num_train_epochs=3,
        weight_decay=0.01,
        logging_dir="./logs",
        logging_steps=10,
    )

    trainer = Trainer(
        model=model,
        args=training_args,
        train_dataset=train_dataset,
        eval_dataset=test_dataset,
        tokenizer=tokenizer,
    )

    # Start tracking emissions
    tracker.start()
    tracker.start_task("inference")

    # Train and evaluate the model
    trainer.train()

    # Perform inference
    predictions = trainer.predict(test_dataset).predictions
    predictions = torch.argmax(torch.tensor(predictions), axis=1).tolist()
    true_labels = test_dataset["label"]

    # Stop tracking emissions
    emissions_data = tracker.stop_task()

    # Calculate accuracy
    accuracy = accuracy_score(true_labels, predictions)

    # Prepare results dictionary
    results = {
        "username": username,
        "space_url": space_url,
        "submission_timestamp": datetime.now().isoformat(),
        "model_description": DESCRIPTION,
        "accuracy": float(accuracy),
        "energy_consumed_wh": emissions_data.energy_consumed * 1000,
        "emissions_gco2eq": emissions_data.emissions * 1000,
        "emissions_data": clean_emissions_data(emissions_data),
        "api_route": ROUTE,
        "dataset_config": {
            "dataset_name": request.dataset_name,
            "test_size": request.test_size,
            "test_seed": request.test_seed
        }
    }
    
    return results