Spaces:
Running
Running
metadata
title: RAG Interview Agent
emoji: π€
colorFrom: blue
colorTo: purple
sdk: streamlit
app_file: app.py
pinned: true
RAG-Powered AI Interview Agent
An intelligent interview assistant that evaluates candidates using pure Retrieval-Augmented Generation (RAG) architecture.
π Features
- CV Screening: Automatic qualification check using semantic similarity
- Smart Interviews: Context-aware questions generated from job requirements
- Fair Evaluation: Answers scored against knowledge base
- Detailed Reports: PDF transcripts with scores and feedback
π οΈ Tech Stack
Component | Technology Used |
---|---|
LLM | Meta Llama-3-8B |
Vector Store | FAISS |
Embeddings | Sentence-Transformers |
UI Framework | Streamlit |
CV Parsing | PyPDF2, python-docx |
π¦ Installation
# Clone the repository
git clone https://huggingface.co/spaces/Jekyll2000/interview_agent
cd your-space-name
# Install dependencies
pip install -r requirements.txt
# Set Hugging Face token
export HUGGINGFACEHUB_API_TOKEN='your-api-token'
# Launch the app
streamlit run app.py
interview-agent/
βββ app.py # Main application
βββ utils/
β βββ cv_processor.py # CV parsing and evaluation
β βββ rag_agent.py # Core RAG implementation
β βββ evaluator.py # Scoring logic
β βββ report_generator.py# PDF report creation
βββ data/ # Job requirements and interviews
βββ requirements.txt # Python dependencies