Spaces:
Sleeping
Sleeping
File size: 1,376 Bytes
fc5b211 88914b2 6189794 88914b2 fc5b211 6189794 88914b2 fc5b211 88914b2 fc5b211 88914b2 fc5b211 88914b2 fc5b211 6189794 88914b2 fc5b211 88914b2 fc5b211 88914b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
import torch
from transformers import T5Tokenizer, T5ForConditionalGeneration
import gradio as gr
# Inicialize o tokenizer e o modelo
tokenizer = T5Tokenizer.from_pretrained('t5-small')
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = T5ForConditionalGeneration.from_pretrained('cssupport/t5-small-awesome-text-to-sql')
model = model.to(device)
model.eval()
# Função para gerar SQL
def generate_sql(input_prompt):
# Tokenize a entrada
inputs = tokenizer(input_prompt, padding=True, truncation=True, return_tensors="pt").to(device)
# Gere a saída
with torch.no_grad():
outputs = model.generate(**inputs, max_length=512)
# Decodifique a saída para texto (SQL)
generated_sql = tokenizer.decode(outputs[0], skip_special_tokens=True)
return generated_sql
# Interface Gradio
def gerar_sql_interface(input_prompt):
# Adiciona o prefixo "tables:" e "query for:" automaticamente
full_prompt = f"tables:\n{input_prompt}\nquery for: {input_prompt}"
sql_query = generate_sql(full_prompt)
return sql_query
# Cria a interface
interface = gr.Interface(
fn=gerar_sql_interface,
inputs="text",
outputs="text",
title="Gerador de SQL",
description="Digite uma consulta em linguagem natural e gere a consulta SQL correspondente."
)
# Inicia a interface
interface.launch() |