Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,35 +1,43 @@
|
|
1 |
import torch
|
2 |
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
|
|
3 |
|
4 |
-
#
|
5 |
tokenizer = T5Tokenizer.from_pretrained('t5-small')
|
6 |
-
|
7 |
-
# Load the model
|
8 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
9 |
model = T5ForConditionalGeneration.from_pretrained('cssupport/t5-small-awesome-text-to-sql')
|
10 |
model = model.to(device)
|
11 |
model.eval()
|
12 |
|
|
|
13 |
def generate_sql(input_prompt):
|
14 |
-
# Tokenize
|
15 |
inputs = tokenizer(input_prompt, padding=True, truncation=True, return_tensors="pt").to(device)
|
16 |
|
17 |
-
#
|
18 |
with torch.no_grad():
|
19 |
outputs = model.generate(**inputs, max_length=512)
|
20 |
|
21 |
-
#
|
22 |
generated_sql = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
23 |
|
24 |
return generated_sql
|
25 |
|
26 |
-
#
|
27 |
-
|
28 |
-
#
|
29 |
-
|
30 |
-
|
|
|
31 |
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
-
|
35 |
-
|
|
|
1 |
import torch
|
2 |
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
3 |
+
import gradio as gr
|
4 |
|
5 |
+
# Inicialize o tokenizer e o modelo
|
6 |
tokenizer = T5Tokenizer.from_pretrained('t5-small')
|
|
|
|
|
7 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
8 |
model = T5ForConditionalGeneration.from_pretrained('cssupport/t5-small-awesome-text-to-sql')
|
9 |
model = model.to(device)
|
10 |
model.eval()
|
11 |
|
12 |
+
# Função para gerar SQL
|
13 |
def generate_sql(input_prompt):
|
14 |
+
# Tokenize a entrada
|
15 |
inputs = tokenizer(input_prompt, padding=True, truncation=True, return_tensors="pt").to(device)
|
16 |
|
17 |
+
# Gere a saída
|
18 |
with torch.no_grad():
|
19 |
outputs = model.generate(**inputs, max_length=512)
|
20 |
|
21 |
+
# Decodifique a saída para texto (SQL)
|
22 |
generated_sql = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
23 |
|
24 |
return generated_sql
|
25 |
|
26 |
+
# Interface Gradio
|
27 |
+
def gerar_sql_interface(input_prompt):
|
28 |
+
# Adiciona o prefixo "tables:" e "query for:" automaticamente
|
29 |
+
full_prompt = f"tables:\n{input_prompt}\nquery for: {input_prompt}"
|
30 |
+
sql_query = generate_sql(full_prompt)
|
31 |
+
return sql_query
|
32 |
|
33 |
+
# Cria a interface
|
34 |
+
interface = gr.Interface(
|
35 |
+
fn=gerar_sql_interface,
|
36 |
+
inputs="text",
|
37 |
+
outputs="text",
|
38 |
+
title="Gerador de SQL",
|
39 |
+
description="Digite uma consulta em linguagem natural e gere a consulta SQL correspondente."
|
40 |
+
)
|
41 |
|
42 |
+
# Inicia a interface
|
43 |
+
interface.launch()
|