copywriter / app.py
JeCabrera's picture
Update app.py
b7c2e6b verified
raw
history blame
4.9 kB
import os
import time
import uuid
from typing import List, Optional
import google.generativeai as genai
import gradio as gr
from PIL import Image
from dotenv import load_dotenv
# Cargar las variables de entorno desde el archivo .env
load_dotenv()
print("google-generativeai:", genai.__version__)
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")
if not GOOGLE_API_KEY:
raise ValueError("GOOGLE_API_KEY is not set in environment variables.")
IMAGE_CACHE_DIRECTORY = "/tmp"
IMAGE_WIDTH = 512
def preprocess_image(image: Image.Image) -> Optional[Image.Image]:
if image:
image_height = int(image.height * IMAGE_WIDTH / image.width)
return image.resize((IMAGE_WIDTH, image_height))
def cache_pil_image(image: Image.Image) -> str:
image_filename = f"{uuid.uuid4()}.jpeg"
os.makedirs(IMAGE_CACHE_DIRECTORY, exist_ok=True)
image_path = os.path.join(IMAGE_CACHE_DIRECTORY, image_filename)
image.save(image_path, "JPEG")
return image_path
def upload(files: Optional[List[str]], chatbot: List[tuple]) -> List[tuple]:
for file in files:
image = Image.open(file).convert('RGB')
image_preview = preprocess_image(image)
if image_preview:
gr.Image(image_preview).render()
image_path = cache_pil_image(image)
chatbot.append(((image_path,), None))
return chatbot
def user(text_prompt: str, chatbot: List[tuple]) -> Tuple[str, List[tuple]]:
if text_prompt:
chatbot.append((text_prompt, None))
return "", chatbot
def bot(
files: Optional[List[str]],
model_choice: str,
system_instruction: Optional[str],
chatbot: List[tuple]
):
if not GOOGLE_API_KEY:
raise ValueError("GOOGLE_API_KEY is not set.")
genai.configure(api_key=GOOGLE_API_KEY)
generation_config = genai.types.GenerationConfig(
temperature=0.7,
max_output_tokens=8192,
top_k=10,
top_p=0.9
)
if not system_instruction:
system_instruction = "No system instruction provided."
text_prompt = [chatbot[-1][0]] if chatbot and chatbot[-1][0] and isinstance(chatbot[-1][0], str) else []
image_prompt = [preprocess_image(Image.open(file).convert('RGB')) for file in files] if files else []
model = genai.GenerativeModel(
model_name=model_choice,
generation_config=generation_config,
system_instruction=system_instruction
)
response = model.generate_content(text_prompt + image_prompt, stream=True, generation_config=generation_config)
chatbot[-1][1] = ""
for chunk in response:
for i in range(0, len(chunk.text), 10):
section = chunk.text[i:i + 10]
chatbot[-1][1] += section
time.sleep(0.01)
yield chatbot
system_instruction_component = gr.Textbox(
placeholder="Enter system instruction...",
show_label=True,
scale=8
)
chatbot_component = gr.Chatbot(label='Gemini', bubble_full_width=False, scale=2, height=300)
text_prompt_component = gr.Textbox(placeholder="Message...", show_label=False, autofocus=True, scale=8)
upload_button_component = gr.UploadButton(label="Upload Images", file_count="multiple", file_types=["image"], scale=1)
run_button_component = gr.Button(value="Run", variant="primary", scale=1)
model_choice_component = gr.Dropdown(
choices=["gemini-1.5-flash", "gemini-2.0-flash-exp", "gemini-1.5-pro"],
value="gemini-1.5-flash",
label="Select Model",
scale=2
)
user_inputs = [text_prompt_component, chatbot_component]
bot_inputs = [upload_button_component, model_choice_component, system_instruction_component, chatbot_component]
with gr.Blocks() as demo:
gr.HTML("<h1 align='center'>Gemini Playground ✨</h1>")
gr.HTML("<h2 align='center'>Play with Gemini Pro and Gemini Pro Vision</h2>")
with gr.Column():
model_choice_component.render()
chatbot_component.render()
with gr.Row():
text_prompt_component.render()
upload_button_component.render()
run_button_component.render()
with gr.Accordion("System Instruction", open=False):
system_instruction_component.render()
run_button_component.click(
fn=user,
inputs=user_inputs,
outputs=[text_prompt_component, chatbot_component],
queue=False
).then(
fn=bot, inputs=bot_inputs, outputs=[chatbot_component],
)
text_prompt_component.submit(
fn=user,
inputs=user_inputs,
outputs=[text_prompt_component, chatbot_component],
queue=False
).then(
fn=bot, inputs=bot_inputs, outputs=[chatbot_component],
)
upload_button_component.upload(
fn=upload,
inputs=[upload_button_component, chatbot_component],
outputs=[chatbot_component],
queue=False
)
demo.queue(max_size=99).launch(debug=False, show_error=True)