File size: 4,895 Bytes
500f371
4bde338
69a8ba9
b7c2e6b
bc54a0a
69a8ba9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7c2e6b
cb0053e
69a8ba9
 
 
 
 
 
 
88c5efb
b7c2e6b
69a8ba9
 
 
 
 
 
 
b7c2e6b
 
69a8ba9
 
 
 
 
 
 
 
 
 
 
 
 
b7c2e6b
69a8ba9
 
 
 
 
 
 
b7c2e6b
f9815f3
 
69a8ba9
c99083d
69a8ba9
 
 
 
 
 
 
f9815f3
69a8ba9
 
 
 
 
acaff10
69a8ba9
 
 
 
 
 
 
 
 
6efed0c
c99083d
69a8ba9
 
 
 
b7c2e6b
 
 
69a8ba9
 
 
 
 
 
 
 
b7c2e6b
69a8ba9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import os
import time
import uuid
from typing import List, Optional
import google.generativeai as genai
import gradio as gr
from PIL import Image
from dotenv import load_dotenv

# Cargar las variables de entorno desde el archivo .env
load_dotenv()

print("google-generativeai:", genai.__version__)

GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")

if not GOOGLE_API_KEY:
    raise ValueError("GOOGLE_API_KEY is not set in environment variables.")

IMAGE_CACHE_DIRECTORY = "/tmp"
IMAGE_WIDTH = 512

def preprocess_image(image: Image.Image) -> Optional[Image.Image]:
    if image:
        image_height = int(image.height * IMAGE_WIDTH / image.width)
        return image.resize((IMAGE_WIDTH, image_height))

def cache_pil_image(image: Image.Image) -> str:
    image_filename = f"{uuid.uuid4()}.jpeg"
    os.makedirs(IMAGE_CACHE_DIRECTORY, exist_ok=True)
    image_path = os.path.join(IMAGE_CACHE_DIRECTORY, image_filename)
    image.save(image_path, "JPEG")
    return image_path

def upload(files: Optional[List[str]], chatbot: List[tuple]) -> List[tuple]:
    for file in files:
        image = Image.open(file).convert('RGB')
        image_preview = preprocess_image(image)
        if image_preview:
            gr.Image(image_preview).render()
        image_path = cache_pil_image(image)
        chatbot.append(((image_path,), None))
    return chatbot

def user(text_prompt: str, chatbot: List[tuple]) -> Tuple[str, List[tuple]]:
    if text_prompt:
        chatbot.append((text_prompt, None))
    return "", chatbot

def bot(
    files: Optional[List[str]],
    model_choice: str,
    system_instruction: Optional[str],
    chatbot: List[tuple]
):
    if not GOOGLE_API_KEY:
        raise ValueError("GOOGLE_API_KEY is not set.")

    genai.configure(api_key=GOOGLE_API_KEY)
    generation_config = genai.types.GenerationConfig(
        temperature=0.7,
        max_output_tokens=8192,
        top_k=10,
        top_p=0.9
    )

    if not system_instruction:
        system_instruction = "No system instruction provided."

    text_prompt = [chatbot[-1][0]] if chatbot and chatbot[-1][0] and isinstance(chatbot[-1][0], str) else []
    image_prompt = [preprocess_image(Image.open(file).convert('RGB')) for file in files] if files else []
    
    model = genai.GenerativeModel(
        model_name=model_choice,
        generation_config=generation_config,
        system_instruction=system_instruction
    )

    response = model.generate_content(text_prompt + image_prompt, stream=True, generation_config=generation_config)

    chatbot[-1][1] = ""
    for chunk in response:
        for i in range(0, len(chunk.text), 10):
            section = chunk.text[i:i + 10]
            chatbot[-1][1] += section
            time.sleep(0.01)
            yield chatbot

system_instruction_component = gr.Textbox(
    placeholder="Enter system instruction...",
    show_label=True,
    scale=8
)

chatbot_component = gr.Chatbot(label='Gemini', bubble_full_width=False, scale=2, height=300)
text_prompt_component = gr.Textbox(placeholder="Message...", show_label=False, autofocus=True, scale=8)
upload_button_component = gr.UploadButton(label="Upload Images", file_count="multiple", file_types=["image"], scale=1)
run_button_component = gr.Button(value="Run", variant="primary", scale=1)
model_choice_component = gr.Dropdown(
    choices=["gemini-1.5-flash", "gemini-2.0-flash-exp", "gemini-1.5-pro"],
    value="gemini-1.5-flash",
    label="Select Model",
    scale=2
)

user_inputs = [text_prompt_component, chatbot_component]
bot_inputs = [upload_button_component, model_choice_component, system_instruction_component, chatbot_component]

with gr.Blocks() as demo:
    gr.HTML("<h1 align='center'>Gemini Playground ✨</h1>")
    gr.HTML("<h2 align='center'>Play with Gemini Pro and Gemini Pro Vision</h2>")
    
    with gr.Column():
        model_choice_component.render()
        chatbot_component.render()
        with gr.Row():
            text_prompt_component.render()
            upload_button_component.render()
            run_button_component.render()

        with gr.Accordion("System Instruction", open=False):
            system_instruction_component.render()

    run_button_component.click(
        fn=user,
        inputs=user_inputs,
        outputs=[text_prompt_component, chatbot_component],
        queue=False
    ).then(
        fn=bot, inputs=bot_inputs, outputs=[chatbot_component],
    )

    text_prompt_component.submit(
        fn=user,
        inputs=user_inputs,
        outputs=[text_prompt_component, chatbot_component],
        queue=False
    ).then(
        fn=bot, inputs=bot_inputs, outputs=[chatbot_component],
    )

    upload_button_component.upload(
        fn=upload,
        inputs=[upload_button_component, chatbot_component],
        outputs=[chatbot_component],
        queue=False
    )

demo.queue(max_size=99).launch(debug=False, show_error=True)