copywriter / app.py
JeCabrera's picture
Update app.py
60be30f verified
raw
history blame
6.23 kB
TITLE = """<h1 align="center">Gemini Playground 💬</h1>"""
SUBTITLE = """<h2 align="center">Play with Gemini Pro and Gemini Pro Vision</h2>"""
import os
import time
import uuid
from typing import List, Tuple, Optional, Dict, Union
import google.generativeai as genai
import gradio as gr
from PIL import Image
from dotenv import load_dotenv
from langdetect import detect
# Cargar las variables de entorno desde el archivo .env
load_dotenv()
print("google-generativeai:", genai.__version__)
# Obtener la clave de la API de las variables de entorno
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")
# Verificar que la clave de la API esté configurada
if not GOOGLE_API_KEY:
raise ValueError("GOOGLE_API_KEY is not set in environment variables.")
IMAGE_CACHE_DIRECTORY = "/tmp"
IMAGE_WIDTH = 512
CHAT_HISTORY = List[Tuple[Optional[Union[Tuple[str], str]], Optional[str]]]
# Preprocesamiento y configuración de secuencias y imágenes
def preprocess_stop_sequences(stop_sequences: str) -> Optional[List[str]]:
return [sequence.strip() for sequence in stop_sequences.split(",")] if stop_sequences else None
def preprocess_image(image: Image.Image) -> Optional[Image.Image]:
if image:
image_height = int(image.height * IMAGE_WIDTH / image.width)
return image.resize((IMAGE_WIDTH, image_height))
def cache_pil_image(image: Image.Image) -> str:
image_filename = f"{uuid.uuid4()}.jpeg"
os.makedirs(IMAGE_CACHE_DIRECTORY, exist_ok=True)
image_path = os.path.join(IMAGE_CACHE_DIRECTORY, image_filename)
image.save(image_path, "JPEG")
return image_path
def upload(files: Optional[List[str]], chatbot: CHAT_HISTORY) -> CHAT_HISTORY:
for file in files:
image = Image.open(file).convert('RGB')
image_preview = preprocess_image(image)
if image_preview:
gr.Image(image_preview).render()
image_path = cache_pil_image(image)
chatbot.append(((image_path,), None))
return chatbot
def user(text_prompt: str, chatbot: CHAT_HISTORY):
if text_prompt:
chatbot.append((text_prompt, None))
return "", chatbot
def bot(
files: Optional[List[str]],
temperature: float,
max_output_tokens: int,
stop_sequences: str,
top_k: int,
top_p: float,
model_name: str, # Recibimos el modelo seleccionado
chatbot: CHAT_HISTORY
):
if not GOOGLE_API_KEY:
raise ValueError("GOOGLE_API_KEY is not set.")
genai.configure(api_key=GOOGLE_API_KEY)
# Detectar el idioma del texto ingresado
text_prompt = [chatbot[-1][0]] if chatbot and chatbot[-1][0] and isinstance(chatbot[-1][0], str) else []
detected_language = detect(text_prompt[-1]) if text_prompt else 'en'
generation_config = genai.types.GenerationConfig(
temperature=temperature,
max_output_tokens=max_output_tokens,
stop_sequences=preprocess_stop_sequences(stop_sequences=stop_sequences),
top_k=top_k,
top_p=top_p
)
# Configurar el modelo seleccionado
model = genai.GenerativeModel(model_name) # Usamos el modelo seleccionado por el usuario
response = model.generate_content(text_prompt + [], stream=True, generation_config=generation_config)
chatbot[-1][1] = ""
for chunk in response:
for i in range(0, len(chunk.text), 10):
section = chunk.text[i:i + 10]
chatbot[-1][1] += section
time.sleep(0.01)
yield chatbot
# Dropdown para seleccionar el modelo
model_dropdown = gr.Dropdown(
label="Selecciona un modelo",
choices=["gemini-1.5-flash", "gemini-2.0-flash-exp", "gemini-1.5-pro"], # Opciones de modelo
value="gemini-1.5-flash", # Valor predeterminado
type="value", # Valor que se selecciona
)
# Componente Gradio
chatbot_component = gr.Chatbot(label='Gemini', bubble_full_width=False, scale=2, height=300)
text_prompt_component = gr.Textbox(placeholder="Message...", show_label=False, autofocus=True, scale=8)
upload_button_component = gr.UploadButton(label="Upload Images", file_count="multiple", file_types=["image"], scale=1)
run_button_component = gr.Button(value="Run", variant="primary", scale=1)
temperature_component = gr.Slider(minimum=0, maximum=1.0, value=0.4, step=0.05, label="Temperature")
max_output_tokens_component = gr.Slider(minimum=1, maximum=2048, value=1024, step=1, label="Token limit")
stop_sequences_component = gr.Textbox(label="Add stop sequence", value="", type="text", placeholder="STOP, END")
top_k_component = gr.Slider(minimum=1, maximum=40, value=32, step=1, label="Top-K")
top_p_component = gr.Slider(minimum=0, maximum=1, value=1, step=0.01, label="Top-P")
user_inputs = [text_prompt_component, chatbot_component]
bot_inputs = [
upload_button_component, temperature_component, max_output_tokens_component,
stop_sequences_component, top_k_component, top_p_component, model_dropdown, chatbot_component
]
with gr.Blocks() as demo:
gr.HTML(TITLE)
gr.HTML(SUBTITLE)
with gr.Column():
chatbot_component.render()
with gr.Row():
text_prompt_component.render()
upload_button_component.render()
run_button_component.render()
with gr.Accordion("Parameters", open=False):
temperature_component.render()
max_output_tokens_component.render()
stop_sequences_component.render()
with gr.Accordion("Advanced", open=False):
top_k_component.render()
top_p_component.render()
run_button_component.click(
fn=user,
inputs=user_inputs,
outputs=[text_prompt_component, chatbot_component],
queue=False
).then(
fn=bot, inputs=bot_inputs, outputs=[chatbot_component],
)
text_prompt_component.submit(
fn=user,
inputs=user_inputs,
outputs=[text_prompt_component, chatbot_component],
queue=False
).then(
fn=bot, inputs=bot_inputs, outputs=[chatbot_component],
)
upload_button_component.upload(
fn=upload,
inputs=[upload_button_component, chatbot_component],
outputs=[chatbot_component],
queue=False
)
demo.queue(max_size=99).launch(debug=False, show_error=True)