File size: 6,231 Bytes
acf4f25
 
31aa2c4
500f371
bc54a0a
 
506ee04
bc54a0a
 
 
dd06ef3
60be30f
dd06ef3
 
 
bc54a0a
506ee04
 
dd06ef3
 
 
 
 
 
beae918
bc54a0a
 
 
8607e04
60be30f
bc54a0a
 
8607e04
bc54a0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60be30f
cb02204
8607e04
3375e1a
f4afbfe
beae918
3375e1a
60be30f
 
 
 
 
bc54a0a
 
 
 
 
73a0d1a
500f371
 
60be30f
 
 
bc54a0a
 
 
 
 
 
 
 
500f371
60be30f
 
 
 
 
 
bc54a0a
 
60be30f
 
 
 
 
 
 
 
 
 
bc54a0a
60be30f
bc54a0a
60be30f
 
bc54a0a
 
 
acf4f25
 
bc54a0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4afbfe
cb02204
f4afbfe
 
 
 
 
bc54a0a
 
 
cb02204
bc54a0a
 
 
 
 
 
 
 
 
 
 
 
8607e04
beae918
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
TITLE = """<h1 align="center">Gemini Playground 💬</h1>"""
SUBTITLE = """<h2 align="center">Play with Gemini Pro and Gemini Pro Vision</h2>"""

import os
import time
import uuid
from typing import List, Tuple, Optional, Dict, Union
import google.generativeai as genai
import gradio as gr
from PIL import Image
from dotenv import load_dotenv
from langdetect import detect

# Cargar las variables de entorno desde el archivo .env
load_dotenv()

print("google-generativeai:", genai.__version__)

# Obtener la clave de la API de las variables de entorno
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")

# Verificar que la clave de la API esté configurada
if not GOOGLE_API_KEY:
    raise ValueError("GOOGLE_API_KEY is not set in environment variables.")

IMAGE_CACHE_DIRECTORY = "/tmp"
IMAGE_WIDTH = 512
CHAT_HISTORY = List[Tuple[Optional[Union[Tuple[str], str]], Optional[str]]]

# Preprocesamiento y configuración de secuencias y imágenes
def preprocess_stop_sequences(stop_sequences: str) -> Optional[List[str]]:
    return [sequence.strip() for sequence in stop_sequences.split(",")] if stop_sequences else None

def preprocess_image(image: Image.Image) -> Optional[Image.Image]:
    if image:
        image_height = int(image.height * IMAGE_WIDTH / image.width)
        return image.resize((IMAGE_WIDTH, image_height))

def cache_pil_image(image: Image.Image) -> str:
    image_filename = f"{uuid.uuid4()}.jpeg"
    os.makedirs(IMAGE_CACHE_DIRECTORY, exist_ok=True)
    image_path = os.path.join(IMAGE_CACHE_DIRECTORY, image_filename)
    image.save(image_path, "JPEG")
    return image_path

def upload(files: Optional[List[str]], chatbot: CHAT_HISTORY) -> CHAT_HISTORY:
    for file in files:
        image = Image.open(file).convert('RGB')
        image_preview = preprocess_image(image)
        if image_preview:
            gr.Image(image_preview).render()
        image_path = cache_pil_image(image)
        chatbot.append(((image_path,), None))
    return chatbot

def user(text_prompt: str, chatbot: CHAT_HISTORY):
    if text_prompt:
        chatbot.append((text_prompt, None))
    return "", chatbot

def bot(
    files: Optional[List[str]],
    temperature: float,
    max_output_tokens: int,
    stop_sequences: str,
    top_k: int,
    top_p: float,
    model_name: str,  # Recibimos el modelo seleccionado
    chatbot: CHAT_HISTORY
):
    if not GOOGLE_API_KEY:
        raise ValueError("GOOGLE_API_KEY is not set.")

    genai.configure(api_key=GOOGLE_API_KEY)

    # Detectar el idioma del texto ingresado
    text_prompt = [chatbot[-1][0]] if chatbot and chatbot[-1][0] and isinstance(chatbot[-1][0], str) else []
    detected_language = detect(text_prompt[-1]) if text_prompt else 'en'

    generation_config = genai.types.GenerationConfig(
        temperature=temperature,
        max_output_tokens=max_output_tokens,
        stop_sequences=preprocess_stop_sequences(stop_sequences=stop_sequences),
        top_k=top_k,
        top_p=top_p
    )

    # Configurar el modelo seleccionado
    model = genai.GenerativeModel(model_name)  # Usamos el modelo seleccionado por el usuario
    response = model.generate_content(text_prompt + [], stream=True, generation_config=generation_config)

    chatbot[-1][1] = ""
    for chunk in response:
        for i in range(0, len(chunk.text), 10):
            section = chunk.text[i:i + 10]
            chatbot[-1][1] += section
            time.sleep(0.01)
            yield chatbot

# Dropdown para seleccionar el modelo
model_dropdown = gr.Dropdown(
    label="Selecciona un modelo",
    choices=["gemini-1.5-flash", "gemini-2.0-flash-exp", "gemini-1.5-pro"],  # Opciones de modelo
    value="gemini-1.5-flash",  # Valor predeterminado
    type="value",  # Valor que se selecciona
)

# Componente Gradio
chatbot_component = gr.Chatbot(label='Gemini', bubble_full_width=False, scale=2, height=300)
text_prompt_component = gr.Textbox(placeholder="Message...", show_label=False, autofocus=True, scale=8)
upload_button_component = gr.UploadButton(label="Upload Images", file_count="multiple", file_types=["image"], scale=1)
run_button_component = gr.Button(value="Run", variant="primary", scale=1)
temperature_component = gr.Slider(minimum=0, maximum=1.0, value=0.4, step=0.05, label="Temperature")
max_output_tokens_component = gr.Slider(minimum=1, maximum=2048, value=1024, step=1, label="Token limit")
stop_sequences_component = gr.Textbox(label="Add stop sequence", value="", type="text", placeholder="STOP, END")
top_k_component = gr.Slider(minimum=1, maximum=40, value=32, step=1, label="Top-K")
top_p_component = gr.Slider(minimum=0, maximum=1, value=1, step=0.01, label="Top-P")

user_inputs = [text_prompt_component, chatbot_component]
bot_inputs = [
    upload_button_component, temperature_component, max_output_tokens_component,
    stop_sequences_component, top_k_component, top_p_component, model_dropdown, chatbot_component
]

with gr.Blocks() as demo:
    gr.HTML(TITLE)
    gr.HTML(SUBTITLE)
    with gr.Column():
        chatbot_component.render()
        with gr.Row():
            text_prompt_component.render()
            upload_button_component.render()
            run_button_component.render()
        with gr.Accordion("Parameters", open=False):
            temperature_component.render()
            max_output_tokens_component.render()
            stop_sequences_component.render()
            with gr.Accordion("Advanced", open=False):
                top_k_component.render()
                top_p_component.render()

    run_button_component.click(
        fn=user,
        inputs=user_inputs,
        outputs=[text_prompt_component, chatbot_component],
        queue=False
    ).then(
        fn=bot, inputs=bot_inputs, outputs=[chatbot_component],
    )

    text_prompt_component.submit(
        fn=user,
        inputs=user_inputs,
        outputs=[text_prompt_component, chatbot_component],
        queue=False
    ).then(
        fn=bot, inputs=bot_inputs, outputs=[chatbot_component],
    )

    upload_button_component.upload(
        fn=upload,
        inputs=[upload_button_component, chatbot_component],
        outputs=[chatbot_component],
        queue=False
    )

demo.queue(max_size=99).launch(debug=False, show_error=True)