Spaces:
Running
Running
File size: 6,231 Bytes
acf4f25 31aa2c4 500f371 bc54a0a 506ee04 bc54a0a dd06ef3 60be30f dd06ef3 bc54a0a 506ee04 dd06ef3 beae918 bc54a0a 8607e04 60be30f bc54a0a 8607e04 bc54a0a 60be30f cb02204 8607e04 3375e1a f4afbfe beae918 3375e1a 60be30f bc54a0a 73a0d1a 500f371 60be30f bc54a0a 500f371 60be30f bc54a0a 60be30f bc54a0a 60be30f bc54a0a 60be30f bc54a0a acf4f25 bc54a0a f4afbfe cb02204 f4afbfe bc54a0a cb02204 bc54a0a 8607e04 beae918 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
TITLE = """<h1 align="center">Gemini Playground 💬</h1>"""
SUBTITLE = """<h2 align="center">Play with Gemini Pro and Gemini Pro Vision</h2>"""
import os
import time
import uuid
from typing import List, Tuple, Optional, Dict, Union
import google.generativeai as genai
import gradio as gr
from PIL import Image
from dotenv import load_dotenv
from langdetect import detect
# Cargar las variables de entorno desde el archivo .env
load_dotenv()
print("google-generativeai:", genai.__version__)
# Obtener la clave de la API de las variables de entorno
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")
# Verificar que la clave de la API esté configurada
if not GOOGLE_API_KEY:
raise ValueError("GOOGLE_API_KEY is not set in environment variables.")
IMAGE_CACHE_DIRECTORY = "/tmp"
IMAGE_WIDTH = 512
CHAT_HISTORY = List[Tuple[Optional[Union[Tuple[str], str]], Optional[str]]]
# Preprocesamiento y configuración de secuencias y imágenes
def preprocess_stop_sequences(stop_sequences: str) -> Optional[List[str]]:
return [sequence.strip() for sequence in stop_sequences.split(",")] if stop_sequences else None
def preprocess_image(image: Image.Image) -> Optional[Image.Image]:
if image:
image_height = int(image.height * IMAGE_WIDTH / image.width)
return image.resize((IMAGE_WIDTH, image_height))
def cache_pil_image(image: Image.Image) -> str:
image_filename = f"{uuid.uuid4()}.jpeg"
os.makedirs(IMAGE_CACHE_DIRECTORY, exist_ok=True)
image_path = os.path.join(IMAGE_CACHE_DIRECTORY, image_filename)
image.save(image_path, "JPEG")
return image_path
def upload(files: Optional[List[str]], chatbot: CHAT_HISTORY) -> CHAT_HISTORY:
for file in files:
image = Image.open(file).convert('RGB')
image_preview = preprocess_image(image)
if image_preview:
gr.Image(image_preview).render()
image_path = cache_pil_image(image)
chatbot.append(((image_path,), None))
return chatbot
def user(text_prompt: str, chatbot: CHAT_HISTORY):
if text_prompt:
chatbot.append((text_prompt, None))
return "", chatbot
def bot(
files: Optional[List[str]],
temperature: float,
max_output_tokens: int,
stop_sequences: str,
top_k: int,
top_p: float,
model_name: str, # Recibimos el modelo seleccionado
chatbot: CHAT_HISTORY
):
if not GOOGLE_API_KEY:
raise ValueError("GOOGLE_API_KEY is not set.")
genai.configure(api_key=GOOGLE_API_KEY)
# Detectar el idioma del texto ingresado
text_prompt = [chatbot[-1][0]] if chatbot and chatbot[-1][0] and isinstance(chatbot[-1][0], str) else []
detected_language = detect(text_prompt[-1]) if text_prompt else 'en'
generation_config = genai.types.GenerationConfig(
temperature=temperature,
max_output_tokens=max_output_tokens,
stop_sequences=preprocess_stop_sequences(stop_sequences=stop_sequences),
top_k=top_k,
top_p=top_p
)
# Configurar el modelo seleccionado
model = genai.GenerativeModel(model_name) # Usamos el modelo seleccionado por el usuario
response = model.generate_content(text_prompt + [], stream=True, generation_config=generation_config)
chatbot[-1][1] = ""
for chunk in response:
for i in range(0, len(chunk.text), 10):
section = chunk.text[i:i + 10]
chatbot[-1][1] += section
time.sleep(0.01)
yield chatbot
# Dropdown para seleccionar el modelo
model_dropdown = gr.Dropdown(
label="Selecciona un modelo",
choices=["gemini-1.5-flash", "gemini-2.0-flash-exp", "gemini-1.5-pro"], # Opciones de modelo
value="gemini-1.5-flash", # Valor predeterminado
type="value", # Valor que se selecciona
)
# Componente Gradio
chatbot_component = gr.Chatbot(label='Gemini', bubble_full_width=False, scale=2, height=300)
text_prompt_component = gr.Textbox(placeholder="Message...", show_label=False, autofocus=True, scale=8)
upload_button_component = gr.UploadButton(label="Upload Images", file_count="multiple", file_types=["image"], scale=1)
run_button_component = gr.Button(value="Run", variant="primary", scale=1)
temperature_component = gr.Slider(minimum=0, maximum=1.0, value=0.4, step=0.05, label="Temperature")
max_output_tokens_component = gr.Slider(minimum=1, maximum=2048, value=1024, step=1, label="Token limit")
stop_sequences_component = gr.Textbox(label="Add stop sequence", value="", type="text", placeholder="STOP, END")
top_k_component = gr.Slider(minimum=1, maximum=40, value=32, step=1, label="Top-K")
top_p_component = gr.Slider(minimum=0, maximum=1, value=1, step=0.01, label="Top-P")
user_inputs = [text_prompt_component, chatbot_component]
bot_inputs = [
upload_button_component, temperature_component, max_output_tokens_component,
stop_sequences_component, top_k_component, top_p_component, model_dropdown, chatbot_component
]
with gr.Blocks() as demo:
gr.HTML(TITLE)
gr.HTML(SUBTITLE)
with gr.Column():
chatbot_component.render()
with gr.Row():
text_prompt_component.render()
upload_button_component.render()
run_button_component.render()
with gr.Accordion("Parameters", open=False):
temperature_component.render()
max_output_tokens_component.render()
stop_sequences_component.render()
with gr.Accordion("Advanced", open=False):
top_k_component.render()
top_p_component.render()
run_button_component.click(
fn=user,
inputs=user_inputs,
outputs=[text_prompt_component, chatbot_component],
queue=False
).then(
fn=bot, inputs=bot_inputs, outputs=[chatbot_component],
)
text_prompt_component.submit(
fn=user,
inputs=user_inputs,
outputs=[text_prompt_component, chatbot_component],
queue=False
).then(
fn=bot, inputs=bot_inputs, outputs=[chatbot_component],
)
upload_button_component.upload(
fn=upload,
inputs=[upload_button_component, chatbot_component],
outputs=[chatbot_component],
queue=False
)
demo.queue(max_size=99).launch(debug=False, show_error=True)
|