Spaces:
Running
Running
import os | |
import time | |
import uuid | |
from typing import List, Tuple, Optional, Union | |
from PIL import Image | |
import google.generativeai as genai | |
import gradio as gr | |
from dotenv import load_dotenv | |
# Cargar las variables de entorno desde el archivo .env | |
load_dotenv() | |
print("google-generativeai:", genai.__version__) | |
# Obtener la clave de la API de las variables de entorno | |
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY") | |
# Verificar que la clave de la API esté configurada | |
if not GOOGLE_API_KEY: | |
raise ValueError("GOOGLE_API_KEY is not set in environment variables.") | |
# Configuración del modelo Gemini | |
generation_config = { | |
"temperature": 1, | |
"top_p": 0.95, | |
"top_k": 40, | |
"max_output_tokens": 8192, | |
"response_mime_type": "text/plain", | |
} | |
genai.configure(api_key=GOOGLE_API_KEY) | |
# Inicializar los modelos para ambas pestañas | |
model_with_images = genai.GenerativeModel( | |
model_name="gemini-1.5-flash", | |
generation_config=generation_config | |
) | |
model_text_only = genai.GenerativeModel( | |
model_name="gemini-1.5-flash", | |
generation_config=generation_config | |
) | |
# Inicializar la sesión de chat para el chatbot sin imágenes | |
chat_text_only = model_text_only.start_chat(history=[]) | |
# Función para transformar el historial de Gradio al formato de Gemini | |
def transform_history(history): | |
new_history = [] | |
for chat_entry in history: | |
new_history.append({"parts": [{"text": chat_entry[0]}], "role": "user"}) | |
new_history.append({"parts": [{"text": chat_entry[1]}], "role": "model"}) | |
return new_history | |
# Función de respuesta que maneja el historial para el chatbot sin imágenes | |
def bot_response( | |
model_choice: str, | |
system_instruction: str, | |
text_prompt: str, | |
chatbot: list, | |
) -> Tuple[list, str]: | |
""" | |
Envía el mensaje al modelo, obtiene la respuesta y actualiza el historial. | |
""" | |
if not text_prompt.strip(): | |
return chatbot, "Por favor, escribe un mensaje válido." | |
# Transformar el historial al formato que espera Gemini | |
transformed_history = transform_history(chatbot) | |
# Configurar el modelo | |
chat_text_only.history = transformed_history | |
# Enviar el mensaje y obtener la respuesta | |
response = chat_text_only.send_message(text_prompt) | |
response.resolve() | |
# Obtener el texto generado por el modelo | |
generated_text = response.text | |
# Actualizar el historial con la pregunta y la respuesta | |
chatbot.append((text_prompt, generated_text)) | |
return chatbot, "" | |
# Funciones para manejar el chatbot con imágenes | |
def preprocess_image(image: Image.Image) -> Optional[Image.Image]: | |
if image: | |
image_height = int(image.height * 512 / image.width) | |
return image.resize((512, image_height)) | |
def cache_pil_image(image: Image.Image) -> str: | |
image_filename = f"{uuid.uuid4()}.jpeg" | |
os.makedirs("/tmp", exist_ok=True) | |
image_path = os.path.join("/tmp", image_filename) | |
image.save(image_path, "JPEG") | |
return image_path | |
def upload(files: Optional[List[str]], chatbot: list) -> list: | |
for file in files: | |
image = Image.open(file).convert('RGB') | |
image_preview = preprocess_image(image) | |
if image_preview: | |
gr.Image(image_preview).render() | |
image_path = cache_pil_image(image) | |
chatbot.append(((image_path,), None)) | |
return chatbot | |
def user(text_prompt: str, chatbot: list): | |
if text_prompt: | |
chatbot.append((text_prompt, None)) | |
return "", chatbot | |
def bot( | |
files: Optional[List[str]], | |
model_choice: str, | |
system_instruction: Optional[str], | |
chatbot: list | |
): | |
if not GOOGLE_API_KEY: | |
raise ValueError("GOOGLE_API_KEY is not set.") | |
genai.configure(api_key=GOOGLE_API_KEY) | |
generation_config = genai.types.GenerationConfig( | |
temperature=0.7, | |
max_output_tokens=8192, | |
top_k=10, | |
top_p=0.9 | |
) | |
if not system_instruction: | |
system_instruction = "1" | |
text_prompt = [chatbot[-1][0]] if chatbot and chatbot[-1][0] and isinstance(chatbot[-1][0], str) else [] | |
image_prompt = [preprocess_image(Image.open(file).convert('RGB')) for file in files] if files else [] | |
model_with_images = genai.GenerativeModel( | |
model_name=model_choice, | |
generation_config=generation_config, | |
system_instruction=system_instruction | |
) | |
response = model_with_images.generate_content(text_prompt + image_prompt, stream=True, generation_config=generation_config) | |
chatbot[-1][1] = "" | |
for chunk in response: | |
for i in range(0, len(chunk.text), 10): | |
section = chunk.text[i:i + 10] | |
chatbot[-1][1] += section | |
time.sleep(0.01) | |
yield chatbot | |
# Interfaces | |
TITLE = """<h1 align="center">Gemini Playground ✨</h1>""" | |
SUBTITLE = """<h2 align="center">Play with Gemini Pro and Gemini Pro Vision</h2>""" | |
# Componentes comunes | |
chatbot_component_with_images = gr.Chatbot(label='Gemini with Images', scale=2, height=300) | |
chatbot_component_text_only = gr.Chatbot(label='Gemini Text Only', scale=2, height=300) | |
text_prompt_component = gr.Textbox(placeholder="Message...", show_label=False, autofocus=True, scale=8) | |
run_button_component = gr.Button(value="Run", variant="primary", scale=1) | |
upload_button_component = gr.UploadButton(label="Upload Images", file_count="multiple", file_types=["image"], scale=1) | |
# Componentes separados para cada pestaña | |
model_choice_component_text_only = gr.Dropdown( | |
choices=["gemini-1.5-flash", "gemini-2.0-flash-exp", "gemini-1.5-pro"], | |
value="gemini-1.5-flash", | |
label="Select Model", | |
scale=2 | |
) | |
model_choice_component_with_images = gr.Dropdown( | |
choices=["gemini-1.5-flash", "gemini-2.0-flash-exp", "gemini-1.5-pro"], | |
value="gemini-1.5-flash", | |
label="Select Model", | |
scale=2 | |
) | |
system_instruction_component = gr.Textbox( | |
placeholder="Enter system instruction...", | |
show_label=True, | |
scale=8 | |
) | |
with gr.Blocks() as demo: | |
gr.HTML(TITLE) | |
gr.HTML(SUBTITLE) | |
with gr.Tabs(): | |
with gr.TabItem("Chatbot with Images"): | |
with gr.Column(): | |
model_choice_component_with_images | |
chatbot_component_with_images | |
with gr.Row(): | |
text_prompt_component | |
upload_button_component | |
run_button_component | |
with gr.Accordion("System Instruction", open=False): | |
system_instruction_component | |
run_button_component.click( | |
fn=user, | |
inputs=[text_prompt_component, chatbot_component_with_images], | |
outputs=[text_prompt_component, chatbot_component_with_images], | |
queue=False | |
).then( | |
fn=bot, | |
inputs=[upload_button_component, model_choice_component_with_images, system_instruction_component, chatbot_component_with_images], | |
outputs=[chatbot_component_with_images], | |
) | |
upload_button_component.upload( | |
fn=upload, | |
inputs=[upload_button_component, chatbot_component_with_images], | |
outputs=[chatbot_component_with_images], | |
queue=False | |
) | |
with gr.TabItem("Chatbot Text Only"): | |
with gr.Column(): | |
model_choice_component_text_only | |
chatbot_component_text_only | |
with gr.Row(): | |
text_prompt_component | |
run_button_component | |
with gr.Accordion("System Instruction", open=False): | |
system_instruction_component | |
run_button_component.click( | |
fn=bot_response, | |
inputs=[model_choice_component_text_only, system_instruction_component, text_prompt_component, chatbot_component_text_only], | |
outputs=[chatbot_component_text_only, text_prompt_component], | |
) | |
text_prompt_component.submit( | |
fn=bot_response, | |
inputs=[model_choice_component_text_only, system_instruction_component, text_prompt_component, chatbot_component_text_only], | |
outputs=[chatbot_component_text_only, text_prompt_component], | |
) | |
demo.queue(max_size=99).launch(debug=True, show_error=True) | |