Spaces:
Running
Running
File size: 8,302 Bytes
446d2fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 |
import os
import time
import uuid
from typing import List, Tuple, Optional, Union
from PIL import Image
import google.generativeai as genai
import gradio as gr
from dotenv import load_dotenv
# Cargar las variables de entorno desde el archivo .env
load_dotenv()
print("google-generativeai:", genai.__version__)
# Obtener la clave de la API de las variables de entorno
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")
# Verificar que la clave de la API esté configurada
if not GOOGLE_API_KEY:
raise ValueError("GOOGLE_API_KEY is not set in environment variables.")
# Configuración del modelo Gemini
generation_config = {
"temperature": 1,
"top_p": 0.95,
"top_k": 40,
"max_output_tokens": 8192,
"response_mime_type": "text/plain",
}
genai.configure(api_key=GOOGLE_API_KEY)
# Inicializar los modelos para ambas pestañas
model_with_images = genai.GenerativeModel(
model_name="gemini-1.5-flash",
generation_config=generation_config
)
model_text_only = genai.GenerativeModel(
model_name="gemini-1.5-flash",
generation_config=generation_config
)
# Inicializar la sesión de chat para el chatbot sin imágenes
chat_text_only = model_text_only.start_chat(history=[])
# Función para transformar el historial de Gradio al formato de Gemini
def transform_history(history):
new_history = []
for chat_entry in history:
new_history.append({"parts": [{"text": chat_entry[0]}], "role": "user"})
new_history.append({"parts": [{"text": chat_entry[1]}], "role": "model"})
return new_history
# Función de respuesta que maneja el historial para el chatbot sin imágenes
def bot_response(
model_choice: str,
system_instruction: str,
text_prompt: str,
chatbot: list,
) -> Tuple[list, str]:
"""
Envía el mensaje al modelo, obtiene la respuesta y actualiza el historial.
"""
if not text_prompt.strip():
return chatbot, "Por favor, escribe un mensaje válido."
# Transformar el historial al formato que espera Gemini
transformed_history = transform_history(chatbot)
# Configurar el modelo
chat_text_only.history = transformed_history
# Enviar el mensaje y obtener la respuesta
response = chat_text_only.send_message(text_prompt)
response.resolve()
# Obtener el texto generado por el modelo
generated_text = response.text
# Actualizar el historial con la pregunta y la respuesta
chatbot.append((text_prompt, generated_text))
return chatbot, ""
# Funciones para manejar el chatbot con imágenes
def preprocess_image(image: Image.Image) -> Optional[Image.Image]:
if image:
image_height = int(image.height * 512 / image.width)
return image.resize((512, image_height))
def cache_pil_image(image: Image.Image) -> str:
image_filename = f"{uuid.uuid4()}.jpeg"
os.makedirs("/tmp", exist_ok=True)
image_path = os.path.join("/tmp", image_filename)
image.save(image_path, "JPEG")
return image_path
def upload(files: Optional[List[str]], chatbot: list) -> list:
for file in files:
image = Image.open(file).convert('RGB')
image_preview = preprocess_image(image)
if image_preview:
gr.Image(image_preview).render()
image_path = cache_pil_image(image)
chatbot.append(((image_path,), None))
return chatbot
def user(text_prompt: str, chatbot: list):
if text_prompt:
chatbot.append((text_prompt, None))
return "", chatbot
def bot(
files: Optional[List[str]],
model_choice: str,
system_instruction: Optional[str],
chatbot: list
):
if not GOOGLE_API_KEY:
raise ValueError("GOOGLE_API_KEY is not set.")
genai.configure(api_key=GOOGLE_API_KEY)
generation_config = genai.types.GenerationConfig(
temperature=0.7,
max_output_tokens=8192,
top_k=10,
top_p=0.9
)
if not system_instruction:
system_instruction = "1"
text_prompt = [chatbot[-1][0]] if chatbot and chatbot[-1][0] and isinstance(chatbot[-1][0], str) else []
image_prompt = [preprocess_image(Image.open(file).convert('RGB')) for file in files] if files else []
model_with_images = genai.GenerativeModel(
model_name=model_choice,
generation_config=generation_config,
system_instruction=system_instruction
)
response = model_with_images.generate_content(text_prompt + image_prompt, stream=True, generation_config=generation_config)
chatbot[-1][1] = ""
for chunk in response:
for i in range(0, len(chunk.text), 10):
section = chunk.text[i:i + 10]
chatbot[-1][1] += section
time.sleep(0.01)
yield chatbot
# Interfaces
TITLE = """<h1 align="center">Gemini Playground ✨</h1>"""
SUBTITLE = """<h2 align="center">Play with Gemini Pro and Gemini Pro Vision</h2>"""
# Componentes comunes
chatbot_component_with_images = gr.Chatbot(label='Gemini with Images', scale=2, height=300)
chatbot_component_text_only = gr.Chatbot(label='Gemini Text Only', scale=2, height=300)
text_prompt_component = gr.Textbox(placeholder="Message...", show_label=False, autofocus=True, scale=8)
run_button_component = gr.Button(value="Run", variant="primary", scale=1)
upload_button_component = gr.UploadButton(label="Upload Images", file_count="multiple", file_types=["image"], scale=1)
# Componentes separados para cada pestaña
model_choice_component_text_only = gr.Dropdown(
choices=["gemini-1.5-flash", "gemini-2.0-flash-exp", "gemini-1.5-pro"],
value="gemini-1.5-flash",
label="Select Model",
scale=2
)
model_choice_component_with_images = gr.Dropdown(
choices=["gemini-1.5-flash", "gemini-2.0-flash-exp", "gemini-1.5-pro"],
value="gemini-1.5-flash",
label="Select Model",
scale=2
)
system_instruction_component = gr.Textbox(
placeholder="Enter system instruction...",
show_label=True,
scale=8
)
with gr.Blocks() as demo:
gr.HTML(TITLE)
gr.HTML(SUBTITLE)
with gr.Tabs():
with gr.TabItem("Chatbot with Images"):
with gr.Column():
model_choice_component_with_images
chatbot_component_with_images
with gr.Row():
text_prompt_component
upload_button_component
run_button_component
with gr.Accordion("System Instruction", open=False):
system_instruction_component
run_button_component.click(
fn=user,
inputs=[text_prompt_component, chatbot_component_with_images],
outputs=[text_prompt_component, chatbot_component_with_images],
queue=False
).then(
fn=bot,
inputs=[upload_button_component, model_choice_component_with_images, system_instruction_component, chatbot_component_with_images],
outputs=[chatbot_component_with_images],
)
upload_button_component.upload(
fn=upload,
inputs=[upload_button_component, chatbot_component_with_images],
outputs=[chatbot_component_with_images],
queue=False
)
with gr.TabItem("Chatbot Text Only"):
with gr.Column():
model_choice_component_text_only
chatbot_component_text_only
with gr.Row():
text_prompt_component
run_button_component
with gr.Accordion("System Instruction", open=False):
system_instruction_component
run_button_component.click(
fn=bot_response,
inputs=[model_choice_component_text_only, system_instruction_component, text_prompt_component, chatbot_component_text_only],
outputs=[chatbot_component_text_only, text_prompt_component],
)
text_prompt_component.submit(
fn=bot_response,
inputs=[model_choice_component_text_only, system_instruction_component, text_prompt_component, chatbot_component_text_only],
outputs=[chatbot_component_text_only, text_prompt_component],
)
demo.queue(max_size=99).launch(debug=True, show_error=True)
|