File size: 8,302 Bytes
446d2fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import os
import time
import uuid
from typing import List, Tuple, Optional, Union
from PIL import Image
import google.generativeai as genai
import gradio as gr
from dotenv import load_dotenv

# Cargar las variables de entorno desde el archivo .env
load_dotenv()

print("google-generativeai:", genai.__version__)

# Obtener la clave de la API de las variables de entorno
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")

# Verificar que la clave de la API esté configurada
if not GOOGLE_API_KEY:
    raise ValueError("GOOGLE_API_KEY is not set in environment variables.")

# Configuración del modelo Gemini
generation_config = {
    "temperature": 1,
    "top_p": 0.95,
    "top_k": 40,
    "max_output_tokens": 8192,
    "response_mime_type": "text/plain",
}

genai.configure(api_key=GOOGLE_API_KEY)

# Inicializar los modelos para ambas pestañas
model_with_images = genai.GenerativeModel(
    model_name="gemini-1.5-flash",
    generation_config=generation_config
)

model_text_only = genai.GenerativeModel(
    model_name="gemini-1.5-flash",
    generation_config=generation_config
)

# Inicializar la sesión de chat para el chatbot sin imágenes
chat_text_only = model_text_only.start_chat(history=[])

# Función para transformar el historial de Gradio al formato de Gemini
def transform_history(history):
    new_history = []
    for chat_entry in history:
        new_history.append({"parts": [{"text": chat_entry[0]}], "role": "user"})
        new_history.append({"parts": [{"text": chat_entry[1]}], "role": "model"})
    return new_history

# Función de respuesta que maneja el historial para el chatbot sin imágenes
def bot_response(
    model_choice: str,
    system_instruction: str,
    text_prompt: str,
    chatbot: list,
) -> Tuple[list, str]:
    """
    Envía el mensaje al modelo, obtiene la respuesta y actualiza el historial.
    """
    if not text_prompt.strip():
        return chatbot, "Por favor, escribe un mensaje válido."

    # Transformar el historial al formato que espera Gemini
    transformed_history = transform_history(chatbot)

    # Configurar el modelo
    chat_text_only.history = transformed_history

    # Enviar el mensaje y obtener la respuesta
    response = chat_text_only.send_message(text_prompt)
    response.resolve()

    # Obtener el texto generado por el modelo
    generated_text = response.text

    # Actualizar el historial con la pregunta y la respuesta
    chatbot.append((text_prompt, generated_text))

    return chatbot, ""

# Funciones para manejar el chatbot con imágenes
def preprocess_image(image: Image.Image) -> Optional[Image.Image]:
    if image:
        image_height = int(image.height * 512 / image.width)
        return image.resize((512, image_height))

def cache_pil_image(image: Image.Image) -> str:
    image_filename = f"{uuid.uuid4()}.jpeg"
    os.makedirs("/tmp", exist_ok=True)
    image_path = os.path.join("/tmp", image_filename)
    image.save(image_path, "JPEG")
    return image_path

def upload(files: Optional[List[str]], chatbot: list) -> list:
    for file in files:
        image = Image.open(file).convert('RGB')
        image_preview = preprocess_image(image)
        if image_preview:
            gr.Image(image_preview).render()
        image_path = cache_pil_image(image)
        chatbot.append(((image_path,), None))
    return chatbot

def user(text_prompt: str, chatbot: list):
    if text_prompt:
        chatbot.append((text_prompt, None))
    return "", chatbot

def bot(
    files: Optional[List[str]],
    model_choice: str,
    system_instruction: Optional[str],
    chatbot: list
):
    if not GOOGLE_API_KEY:
        raise ValueError("GOOGLE_API_KEY is not set.")

    genai.configure(api_key=GOOGLE_API_KEY)
    generation_config = genai.types.GenerationConfig(
        temperature=0.7,
        max_output_tokens=8192,
        top_k=10,
        top_p=0.9
    )

    if not system_instruction:
        system_instruction = "1"

    text_prompt = [chatbot[-1][0]] if chatbot and chatbot[-1][0] and isinstance(chatbot[-1][0], str) else []
    image_prompt = [preprocess_image(Image.open(file).convert('RGB')) for file in files] if files else []

    model_with_images = genai.GenerativeModel(
        model_name=model_choice,
        generation_config=generation_config,
        system_instruction=system_instruction
    )

    response = model_with_images.generate_content(text_prompt + image_prompt, stream=True, generation_config=generation_config)

    chatbot[-1][1] = ""
    for chunk in response:
        for i in range(0, len(chunk.text), 10):
            section = chunk.text[i:i + 10]
            chatbot[-1][1] += section
            time.sleep(0.01)
            yield chatbot

# Interfaces
TITLE = """<h1 align="center">Gemini Playground ✨</h1>"""
SUBTITLE = """<h2 align="center">Play with Gemini Pro and Gemini Pro Vision</h2>"""

# Componentes comunes
chatbot_component_with_images = gr.Chatbot(label='Gemini with Images', scale=2, height=300)
chatbot_component_text_only = gr.Chatbot(label='Gemini Text Only', scale=2, height=300)
text_prompt_component = gr.Textbox(placeholder="Message...", show_label=False, autofocus=True, scale=8)
run_button_component = gr.Button(value="Run", variant="primary", scale=1)
upload_button_component = gr.UploadButton(label="Upload Images", file_count="multiple", file_types=["image"], scale=1)

# Componentes separados para cada pestaña
model_choice_component_text_only = gr.Dropdown(
    choices=["gemini-1.5-flash", "gemini-2.0-flash-exp", "gemini-1.5-pro"],
    value="gemini-1.5-flash",
    label="Select Model",
    scale=2
)

model_choice_component_with_images = gr.Dropdown(
    choices=["gemini-1.5-flash", "gemini-2.0-flash-exp", "gemini-1.5-pro"],
    value="gemini-1.5-flash",
    label="Select Model",
    scale=2
)

system_instruction_component = gr.Textbox(
    placeholder="Enter system instruction...",
    show_label=True,
    scale=8
)

with gr.Blocks() as demo:
    gr.HTML(TITLE)
    gr.HTML(SUBTITLE)
    with gr.Tabs():
        with gr.TabItem("Chatbot with Images"):
            with gr.Column():
                model_choice_component_with_images
                chatbot_component_with_images
                with gr.Row():
                    text_prompt_component
                    upload_button_component
                    run_button_component
                with gr.Accordion("System Instruction", open=False):
                    system_instruction_component

            run_button_component.click(
                fn=user,
                inputs=[text_prompt_component, chatbot_component_with_images],
                outputs=[text_prompt_component, chatbot_component_with_images],
                queue=False
            ).then(
                fn=bot,
                inputs=[upload_button_component, model_choice_component_with_images, system_instruction_component, chatbot_component_with_images],
                outputs=[chatbot_component_with_images],
            )

            upload_button_component.upload(
                fn=upload,
                inputs=[upload_button_component, chatbot_component_with_images],
                outputs=[chatbot_component_with_images],
                queue=False
            )

        with gr.TabItem("Chatbot Text Only"):
            with gr.Column():
                model_choice_component_text_only
                chatbot_component_text_only
                with gr.Row():
                    text_prompt_component
                    run_button_component
                with gr.Accordion("System Instruction", open=False):
                    system_instruction_component

            run_button_component.click(
                fn=bot_response,
                inputs=[model_choice_component_text_only, system_instruction_component, text_prompt_component, chatbot_component_text_only],
                outputs=[chatbot_component_text_only, text_prompt_component],
            )

            text_prompt_component.submit(
                fn=bot_response,
                inputs=[model_choice_component_text_only, system_instruction_component, text_prompt_component, chatbot_component_text_only],
                outputs=[chatbot_component_text_only, text_prompt_component],
            )

demo.queue(max_size=99).launch(debug=True, show_error=True)