Spaces:
Runtime error
Runtime error
import random | |
import requests | |
import streamlit as st | |
from clip_model import ClipModel | |
from PIL import Image | |
IMAGES_LINKS = ["https://cdn.pixabay.com/photo/2014/10/13/21/34/clipper-487503_960_720.jpg", | |
"https://cdn.pixabay.com/photo/2019/09/06/04/25/beach-4455433_960_720.jpg", | |
"https://cdn.pixabay.com/photo/2019/11/11/14/30/zebra-4618513_960_720.jpg", | |
"https://cdn.pixabay.com/photo/2020/11/04/15/29/coffee-beans-5712780_960_720.jpg", | |
"https://cdn.pixabay.com/photo/2020/03/24/20/42/namibia-4965457_960_720.jpg", | |
"https://cdn.pixabay.com/photo/2020/08/27/07/31/restaurant-5521372_960_720.jpg", | |
"https://cdn.pixabay.com/photo/2020/08/24/21/41/couple-5515141_960_720.jpg", | |
"https://cdn.pixabay.com/photo/2020/01/31/07/10/billboards-4807268_960_720.jpg", | |
"https://cdn.pixabay.com/photo/2017/07/31/20/48/shell-2560930_960_720.jpg", | |
"https://cdn.pixabay.com/photo/2020/08/13/01/29/koala-5483931_960_720.jpg", | |
] | |
# Cache this so that it doesn't change every time something changes in the page | |
def load_default_dataset(): | |
return [load_image_from_url(url) for url in IMAGES_LINKS] | |
def load_image_from_url(url: str) -> Image.Image: | |
return Image.open(requests.get(url, stream=True).raw) | |
def load_model(model_architecture: str) -> ClipModel: | |
return ClipModel(model_architecture) | |
def init_state(): | |
if "images" not in st.session_state: | |
st.session_state.images = None | |
if "prompts" not in st.session_state: | |
st.session_state.prompts = None | |
if "predictions" not in st.session_state: | |
st.session_state.predictions = None | |
if "default_text_input" not in st.session_state: | |
st.session_state.default_text_input = None | |
if "model_architecture" not in st.session_state: | |
st.session_state.model_architecture = "RN50" | |
def limit_number_images(): | |
"""When moving between tasks sometimes the state of images can have too many samples""" | |
if st.session_state.images is not None and len(st.session_state.images) > 1: | |
st.session_state.images = [st.session_state.images[0]] | |
def limit_number_prompts(): | |
"""When moving between tasks sometimes the state of prompts can have too many samples""" | |
if st.session_state.prompts is not None and len(st.session_state.prompts) > 1: | |
st.session_state.prompts = [st.session_state.prompts[0]] | |
def is_valid_prediction_state() -> bool: | |
if st.session_state.images is None or len(st.session_state.images) < 1: | |
st.error("Choose at least one image before predicting") | |
return False | |
if st.session_state.prompts is None or len(st.session_state.prompts) < 1: | |
st.error("Write at least one prompt before predicting") | |
return False | |
return True | |
def preprocess_image(image: Image.Image, max_size: int = 1200) -> Image.Image: | |
"""Set up a max size because otherwise the API sometimes breaks""" | |
width_0, height_0 = image.size | |
if max((width_0, height_0)) <= max_size: | |
return image | |
if width_0 > height_0: | |
aspect_ratio = max_size / float(width_0) | |
new_height = int(float(height_0) * float(aspect_ratio)) | |
image = image.resize((max_size, new_height), Image.ANTIALIAS) | |
return image | |
else: | |
aspect_ratio = max_size / float(height_0) | |
new_width = int(float(width_0) * float(aspect_ratio)) | |
image = image.resize((max_size, new_width), Image.ANTIALIAS) | |
return image | |
class Sections: | |
def header(): | |
st.markdown('<link rel="stylesheet" ' | |
'href="https://fonts.googleapis.com/css?family=Merriweather+Sans">' | |
'<style> ' | |
'h1 {font-family: "Merriweather Sans", sans-serif; font-size: 48px; color: #f57c70}' | |
'a {color: #e6746a !important}' | |
'.stButton>button {' | |
' color: white;' | |
' background: #e6746a;' | |
' display:inline-block;' | |
' width: 100%;' | |
' border-width: 0px;' | |
' font-weight: 500;' | |
' padding-top: 10px;' | |
' padding-bottom: 10px;' | |
'}' | |
'</style>', unsafe_allow_html=True) | |
st.markdown("# CLIP Playground") | |
st.markdown("### Try OpenAI's CLIP model in your browser") | |
st.markdown(" ") | |
st.markdown(" ") | |
with st.expander("What is CLIP?"): | |
st.markdown("CLIP is a machine learning model that computes similarity between text " | |
"(also called prompts) and images. It has been trained on a dataset with millions of diverse" | |
" image-prompt pairs, which allows it to generalize to unseen examples." | |
" <br /> Check out [OpenAI's blogpost](https://openai.com/blog/clip/) for more details", | |
unsafe_allow_html=True) | |
col1, col2 = st.columns(2) | |
col1.image("https://openaiassets.blob.core.windows.net/$web/clip/draft/20210104b/overview-a.svg") | |
col2.image("https://openaiassets.blob.core.windows.net/$web/clip/draft/20210104b/overview-b.svg") | |
with st.expander("What can CLIP do?"): | |
st.markdown("#### Prompt ranking") | |
st.markdown("Given different prompts and an image CLIP will rank the different prompts based on how well they describe the image") | |
st.markdown("#### Image ranking") | |
st.markdown("Given different images and a prompt CLIP will rank the different images based on how well they fit the description") | |
st.markdown("#### Image classification") | |
st.markdown("Similar to prompt ranking, given a set of classes CLIP can classify an image between them. " | |
"Think of [Hotdog/ Not hotdog](https://www.youtube.com/watch?v=pqTntG1RXSY&ab_channel=tvpromos) without any training.") | |
st.markdown(" ") | |
st.markdown(" ") | |
def image_uploader(accept_multiple_files: bool): | |
uploaded_images = st.file_uploader("Upload image", type=[".png", ".jpg", ".jpeg"], | |
accept_multiple_files=accept_multiple_files) | |
if (not accept_multiple_files and uploaded_images is not None) or (accept_multiple_files and len(uploaded_images) >= 1): | |
images = [] | |
if not accept_multiple_files: | |
uploaded_images = [uploaded_images] | |
for uploaded_image in uploaded_images: | |
pil_image = Image.open(uploaded_image) | |
pil_image = preprocess_image(pil_image) | |
images.append(pil_image) | |
st.session_state.images = images | |
def image_picker(default_text_input: str): | |
col1, col2, col3 = st.columns(3) | |
with col1: | |
default_image_1 = load_image_from_url("https://cdn.pixabay.com/photo/2014/10/13/21/34/clipper-487503_960_720.jpg") | |
st.image(default_image_1, use_column_width=True) | |
if st.button("Select image 1"): | |
st.session_state.images = [default_image_1] | |
st.session_state.default_text_input = default_text_input | |
with col2: | |
default_image_2 = load_image_from_url("https://cdn.pixabay.com/photo/2019/11/11/14/30/zebra-4618513_960_720.jpg") | |
st.image(default_image_2, use_column_width=True) | |
if st.button("Select image 2"): | |
st.session_state.images = [default_image_2] | |
st.session_state.default_text_input = default_text_input | |
with col3: | |
default_image_3 = load_image_from_url("https://cdn.pixabay.com/photo/2016/11/15/16/24/banana-1826760_960_720.jpg") | |
st.image(default_image_3, use_column_width=True) | |
if st.button("Select image 3"): | |
st.session_state.images = [default_image_3] | |
st.session_state.default_text_input = default_text_input | |
def dataset_picker(): | |
columns = st.columns(5) | |
st.session_state.dataset = load_default_dataset() | |
image_idx = 0 | |
for col in columns: | |
col.image(st.session_state.dataset[image_idx]) | |
image_idx += 1 | |
col.image(st.session_state.dataset[image_idx]) | |
image_idx += 1 | |
if st.button("Select random dataset"): | |
st.session_state.images = st.session_state.dataset | |
st.session_state.default_text_input = "A sign that says 'SLOW DOWN'" | |
def prompts_input(input_label: str, prompt_prefix: str = ''): | |
raw_text_input = st.text_input(input_label, | |
value=st.session_state.default_text_input if st.session_state.default_text_input is not None else "") | |
st.session_state.is_default_text_input = raw_text_input == st.session_state.default_text_input | |
if raw_text_input: | |
st.session_state.prompts = [prompt_prefix + class_name for class_name in raw_text_input.split(";") if len(class_name) > 1] | |
def single_image_input_preview(): | |
st.markdown("### Preview") | |
col1, col2 = st.columns([1, 2]) | |
with col1: | |
st.markdown("Image to classify") | |
if st.session_state.images is not None: | |
st.image(st.session_state.images[0], use_column_width=True) | |
else: | |
st.warning("Select an image") | |
with col2: | |
st.markdown("Labels to choose from") | |
if st.session_state.prompts is not None: | |
for prompt in st.session_state.prompts: | |
st.markdown(f"* {prompt}") | |
if len(st.session_state.prompts) < 2: | |
st.warning("At least two prompts/classes are needed") | |
else: | |
st.warning("Enter the prompts/classes to classify from") | |
def multiple_images_input_preview(): | |
st.markdown("### Preview") | |
st.markdown("Images to classify") | |
col1, col2, col3 = st.columns(3) | |
if st.session_state.images is not None: | |
for idx, image in enumerate(st.session_state.images): | |
if idx < len(st.session_state.images) / 2: | |
col1.image(st.session_state.images[idx], use_column_width=True) | |
else: | |
col2.image(st.session_state.images[idx], use_column_width=True) | |
if len(st.session_state.images) < 2: | |
col2.warning("At least 2 images required") | |
else: | |
col1.warning("Select an image") | |
with col3: | |
st.markdown("Query prompt") | |
if st.session_state.prompts is not None: | |
for prompt in st.session_state.prompts: | |
st.write(prompt) | |
else: | |
st.warning("Enter the prompt to classify") | |
def classification_output(model: ClipModel): | |
if st.button("Predict") and is_valid_prediction_state(): | |
with st.spinner("Predicting..."): | |
st.markdown("### Results") | |
if len(st.session_state.images) == 1: | |
scores = model.compute_prompts_probabilities(st.session_state.images[0], st.session_state.prompts) | |
scored_prompts = [(prompt, score) for prompt, score in zip(st.session_state.prompts, scores)] | |
sorted_scored_prompts = sorted(scored_prompts, key=lambda x: x[1], reverse=True) | |
for prompt, probability in sorted_scored_prompts: | |
percentage_prob = int(probability * 100) | |
st.markdown( | |
f"###  {prompt}") | |
elif len(st.session_state.prompts) == 1: | |
st.markdown(f"### {st.session_state.prompts[0]}") | |
scores = model.compute_images_probabilities(st.session_state.images, st.session_state.prompts[0]) | |
scored_images = [(image, score) for image, score in zip(st.session_state.images, scores)] | |
sorted_scored_images = sorted(scored_images, key=lambda x: x[1], reverse=True) | |
for image, probability in sorted_scored_images[:5]: | |
col1, col2 = st.columns([1, 3]) | |
col1.image(image, use_column_width=True) | |
percentage_prob = int(probability * 100) | |
col2.markdown(f"### ") | |
else: | |
raise ValueError("Invalid state") | |
# is_default_image = isinstance(state.images[0], str) | |
# is_default_prediction = is_default_image and state.is_default_text_input | |
# if is_default_prediction: | |
# st.markdown("<br>:information_source: Try writing your own prompts and using your own pictures!", | |
# unsafe_allow_html=True) | |
# elif is_default_image: | |
# st.markdown("<br>:information_source: You can also use your own pictures!", | |
# unsafe_allow_html=True) | |
# elif state.is_default_text_input: | |
# st.markdown("<br>:information_source: Try writing your own prompts!" | |
# " It can be whatever you can think of", | |
# unsafe_allow_html=True) | |
if __name__ == "__main__": | |
Sections.header() | |
col1, col2 = st.columns([1, 2]) | |
col1.markdown(" "); col1.markdown(" ") | |
col1.markdown("#### Task selection") | |
task_name: str = col2.selectbox("", options=["Prompt ranking", "Image ranking", "Image classification"]) | |
st.markdown("<br>", unsafe_allow_html=True) | |
init_state() | |
model = load_model(st.session_state.model_architecture) | |
if task_name == "Image classification": | |
Sections.image_uploader(accept_multiple_files=False) | |
if st.session_state.images is None: | |
st.markdown("or choose one from") | |
Sections.image_picker(default_text_input="banana; boat; bird") | |
input_label = "Enter the classes to chose from separated by a semi-colon. (f.x. `banana; boat; honesty; apple`)" | |
Sections.prompts_input(input_label, prompt_prefix='A picture of a ') | |
limit_number_images() | |
Sections.single_image_input_preview() | |
Sections.classification_output(model) | |
elif task_name == "Prompt ranking": | |
Sections.image_uploader(accept_multiple_files=False) | |
if st.session_state.images is None: | |
st.markdown("or choose one from") | |
Sections.image_picker(default_text_input="A calm afternoon in the Mediterranean; " | |
"A beautiful creature;" | |
" Something that grows in tropical regions") | |
input_label = "Enter the prompts to choose from separated by a semi-colon. " \ | |
"(f.x. `An image that inspires; A feeling of loneliness; joyful and young; apple`)" | |
Sections.prompts_input(input_label) | |
limit_number_images() | |
Sections.single_image_input_preview() | |
Sections.classification_output(model) | |
elif task_name == "Image ranking": | |
Sections.image_uploader(accept_multiple_files=True) | |
if st.session_state.images is None or len(st.session_state.images) < 2: | |
st.markdown("or use this random dataset") | |
Sections.dataset_picker() | |
Sections.prompts_input("Enter the prompt to query the images by") | |
limit_number_prompts() | |
Sections.multiple_images_input_preview() | |
Sections.classification_output(model) | |
with st.expander("Advanced settings"): | |
st.session_state.model_architecture = st.selectbox("Model architecture", options=['RN50', 'RN101', 'RN50x4', 'RN50x16', 'RN50x64', 'ViT-B/32', | |
'ViT-B/16', 'ViT-L/14', 'ViT-L/14@336px'], index=0) | |
st.markdown("<br><br><br><br>Made by [@JavierFnts](https://twitter.com/JavierFnts) | [How was CLIP Playground built?](https://twitter.com/JavierFnts/status/1363522529072214019)" | |
"", unsafe_allow_html=True) | |