Spaces:
Runtime error
Runtime error
File size: 16,547 Bytes
081801e 30c8dd0 b0cb25e 081801e 30c8dd0 af5047d ed1918f 081801e af5047d 30c8dd0 e942bb1 081801e 0454d20 e942bb1 0454d20 ed1918f 0454d20 714cf07 0454d20 714cf07 0454d20 714cf07 0454d20 714cf07 0454d20 a930e55 0454d20 a930e55 5359e07 b0cb25e ff733c7 b0cb25e 2d2805b b0cb25e 0454d20 2d2805b 0454d20 2d2805b 0454d20 2d2805b d0950d8 2d2805b d0950d8 2d2805b d0950d8 2d2805b b0cb25e 0454d20 af5047d 714cf07 af5047d 5359e07 0454d20 af5047d b0cb25e 0454d20 b0cb25e 30c8dd0 b0cb25e 0454d20 b0cb25e 30c8dd0 b0cb25e 0454d20 b0cb25e 30c8dd0 b0cb25e 0454d20 081801e 0454d20 081801e 0454d20 081801e 0454d20 081801e 0454d20 b0cb25e 0454d20 d0950d8 0454d20 d0950d8 0454d20 b0cb25e 0454d20 2d2805b 0454d20 b0cb25e 0454d20 b0cb25e 0454d20 2d2805b 0454d20 714cf07 b0cb25e 714cf07 ed1918f 081801e 0454d20 2d2805b 081801e 0454d20 081801e 0454d20 af5047d 081801e 0454d20 2d2805b 081801e b0cb25e 0454d20 40497e6 b0cb25e 30c8dd0 b0cb25e 0454d20 30c8dd0 081801e 0454d20 30c8dd0 0454d20 30c8dd0 0454d20 081801e 30c8dd0 b0cb25e 40497e6 e942bb1 40497e6 e942bb1 40497e6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 |
import random
import requests
import streamlit as st
from clip_model import ClipModel
from PIL import Image
IMAGES_LINKS = ["https://cdn.pixabay.com/photo/2014/10/13/21/34/clipper-487503_960_720.jpg",
"https://cdn.pixabay.com/photo/2019/09/06/04/25/beach-4455433_960_720.jpg",
"https://cdn.pixabay.com/photo/2019/11/11/14/30/zebra-4618513_960_720.jpg",
"https://cdn.pixabay.com/photo/2020/11/04/15/29/coffee-beans-5712780_960_720.jpg",
"https://cdn.pixabay.com/photo/2020/03/24/20/42/namibia-4965457_960_720.jpg",
"https://cdn.pixabay.com/photo/2020/08/27/07/31/restaurant-5521372_960_720.jpg",
"https://cdn.pixabay.com/photo/2020/08/24/21/41/couple-5515141_960_720.jpg",
"https://cdn.pixabay.com/photo/2020/01/31/07/10/billboards-4807268_960_720.jpg",
"https://cdn.pixabay.com/photo/2017/07/31/20/48/shell-2560930_960_720.jpg",
"https://cdn.pixabay.com/photo/2020/08/13/01/29/koala-5483931_960_720.jpg",
]
@st.cache # Cache this so that it doesn't change every time something changes in the page
def load_default_dataset():
return [load_image_from_url(url) for url in IMAGES_LINKS]
def load_image_from_url(url: str) -> Image.Image:
return Image.open(requests.get(url, stream=True).raw)
@st.cache
def load_model(model_architecture: str) -> ClipModel:
return ClipModel(model_architecture)
def init_state():
if "images" not in st.session_state:
st.session_state.images = None
if "prompts" not in st.session_state:
st.session_state.prompts = None
if "predictions" not in st.session_state:
st.session_state.predictions = None
if "default_text_input" not in st.session_state:
st.session_state.default_text_input = None
if "model_architecture" not in st.session_state:
st.session_state.model_architecture = "RN50"
def limit_number_images():
"""When moving between tasks sometimes the state of images can have too many samples"""
if st.session_state.images is not None and len(st.session_state.images) > 1:
st.session_state.images = [st.session_state.images[0]]
def limit_number_prompts():
"""When moving between tasks sometimes the state of prompts can have too many samples"""
if st.session_state.prompts is not None and len(st.session_state.prompts) > 1:
st.session_state.prompts = [st.session_state.prompts[0]]
def is_valid_prediction_state() -> bool:
if st.session_state.images is None or len(st.session_state.images) < 1:
st.error("Choose at least one image before predicting")
return False
if st.session_state.prompts is None or len(st.session_state.prompts) < 1:
st.error("Write at least one prompt before predicting")
return False
return True
def preprocess_image(image: Image.Image, max_size: int = 1200) -> Image.Image:
"""Set up a max size because otherwise the API sometimes breaks"""
width_0, height_0 = image.size
if max((width_0, height_0)) <= max_size:
return image
if width_0 > height_0:
aspect_ratio = max_size / float(width_0)
new_height = int(float(height_0) * float(aspect_ratio))
image = image.resize((max_size, new_height), Image.ANTIALIAS)
return image
else:
aspect_ratio = max_size / float(height_0)
new_width = int(float(width_0) * float(aspect_ratio))
image = image.resize((max_size, new_width), Image.ANTIALIAS)
return image
class Sections:
@staticmethod
def header():
st.markdown('<link rel="stylesheet" '
'href="https://fonts.googleapis.com/css?family=Merriweather+Sans">'
'<style> '
'h1 {font-family: "Merriweather Sans", sans-serif; font-size: 48px; color: #f57c70}'
'a {color: #e6746a !important}'
'.stButton>button {'
' color: white;'
' background: #e6746a;'
' display:inline-block;'
' width: 100%;'
' border-width: 0px;'
' font-weight: 500;'
' padding-top: 10px;'
' padding-bottom: 10px;'
'}'
'</style>', unsafe_allow_html=True)
st.markdown("# CLIP Playground")
st.markdown("### Try OpenAI's CLIP model in your browser")
st.markdown(" ")
st.markdown(" ")
with st.expander("What is CLIP?"):
st.markdown("CLIP is a machine learning model that computes similarity between text "
"(also called prompts) and images. It has been trained on a dataset with millions of diverse"
" image-prompt pairs, which allows it to generalize to unseen examples."
" <br /> Check out [OpenAI's blogpost](https://openai.com/blog/clip/) for more details",
unsafe_allow_html=True)
col1, col2 = st.columns(2)
col1.image("https://openaiassets.blob.core.windows.net/$web/clip/draft/20210104b/overview-a.svg")
col2.image("https://openaiassets.blob.core.windows.net/$web/clip/draft/20210104b/overview-b.svg")
with st.expander("What can CLIP do?"):
st.markdown("#### Prompt ranking")
st.markdown("Given different prompts and an image CLIP will rank the different prompts based on how well they describe the image")
st.markdown("#### Image ranking")
st.markdown("Given different images and a prompt CLIP will rank the different images based on how well they fit the description")
st.markdown("#### Image classification")
st.markdown("Similar to prompt ranking, given a set of classes CLIP can classify an image between them. "
"Think of [Hotdog/ Not hotdog](https://www.youtube.com/watch?v=pqTntG1RXSY&ab_channel=tvpromos) without any training.")
st.markdown(" ")
st.markdown(" ")
@staticmethod
def image_uploader(accept_multiple_files: bool):
uploaded_images = st.file_uploader("Upload image", type=[".png", ".jpg", ".jpeg"],
accept_multiple_files=accept_multiple_files)
if (not accept_multiple_files and uploaded_images is not None) or (accept_multiple_files and len(uploaded_images) >= 1):
images = []
if not accept_multiple_files:
uploaded_images = [uploaded_images]
for uploaded_image in uploaded_images:
pil_image = Image.open(uploaded_image)
pil_image = preprocess_image(pil_image)
images.append(pil_image)
st.session_state.images = images
@staticmethod
def image_picker(default_text_input: str):
col1, col2, col3 = st.columns(3)
with col1:
default_image_1 = load_image_from_url("https://cdn.pixabay.com/photo/2014/10/13/21/34/clipper-487503_960_720.jpg")
st.image(default_image_1, use_column_width=True)
if st.button("Select image 1"):
st.session_state.images = [default_image_1]
st.session_state.default_text_input = default_text_input
with col2:
default_image_2 = load_image_from_url("https://cdn.pixabay.com/photo/2019/11/11/14/30/zebra-4618513_960_720.jpg")
st.image(default_image_2, use_column_width=True)
if st.button("Select image 2"):
st.session_state.images = [default_image_2]
st.session_state.default_text_input = default_text_input
with col3:
default_image_3 = load_image_from_url("https://cdn.pixabay.com/photo/2016/11/15/16/24/banana-1826760_960_720.jpg")
st.image(default_image_3, use_column_width=True)
if st.button("Select image 3"):
st.session_state.images = [default_image_3]
st.session_state.default_text_input = default_text_input
@staticmethod
def dataset_picker():
columns = st.columns(5)
st.session_state.dataset = load_default_dataset()
image_idx = 0
for col in columns:
col.image(st.session_state.dataset[image_idx])
image_idx += 1
col.image(st.session_state.dataset[image_idx])
image_idx += 1
if st.button("Select random dataset"):
st.session_state.images = st.session_state.dataset
st.session_state.default_text_input = "A sign that says 'SLOW DOWN'"
@staticmethod
def prompts_input(input_label: str, prompt_prefix: str = ''):
raw_text_input = st.text_input(input_label,
value=st.session_state.default_text_input if st.session_state.default_text_input is not None else "")
st.session_state.is_default_text_input = raw_text_input == st.session_state.default_text_input
if raw_text_input:
st.session_state.prompts = [prompt_prefix + class_name for class_name in raw_text_input.split(";") if len(class_name) > 1]
@staticmethod
def single_image_input_preview():
st.markdown("### Preview")
col1, col2 = st.columns([1, 2])
with col1:
st.markdown("Image to classify")
if st.session_state.images is not None:
st.image(st.session_state.images[0], use_column_width=True)
else:
st.warning("Select an image")
with col2:
st.markdown("Labels to choose from")
if st.session_state.prompts is not None:
for prompt in st.session_state.prompts:
st.markdown(f"* {prompt}")
if len(st.session_state.prompts) < 2:
st.warning("At least two prompts/classes are needed")
else:
st.warning("Enter the prompts/classes to classify from")
@staticmethod
def multiple_images_input_preview():
st.markdown("### Preview")
st.markdown("Images to classify")
col1, col2, col3 = st.columns(3)
if st.session_state.images is not None:
for idx, image in enumerate(st.session_state.images):
if idx < len(st.session_state.images) / 2:
col1.image(st.session_state.images[idx], use_column_width=True)
else:
col2.image(st.session_state.images[idx], use_column_width=True)
if len(st.session_state.images) < 2:
col2.warning("At least 2 images required")
else:
col1.warning("Select an image")
with col3:
st.markdown("Query prompt")
if st.session_state.prompts is not None:
for prompt in st.session_state.prompts:
st.write(prompt)
else:
st.warning("Enter the prompt to classify")
@staticmethod
def classification_output(model: ClipModel):
if st.button("Predict") and is_valid_prediction_state():
with st.spinner("Predicting..."):
st.markdown("### Results")
if len(st.session_state.images) == 1:
scores = model.compute_prompts_probabilities(st.session_state.images[0], st.session_state.prompts)
scored_prompts = [(prompt, score) for prompt, score in zip(st.session_state.prompts, scores)]
sorted_scored_prompts = sorted(scored_prompts, key=lambda x: x[1], reverse=True)
for prompt, probability in sorted_scored_prompts:
percentage_prob = int(probability * 100)
st.markdown(
f"###  {prompt}")
elif len(st.session_state.prompts) == 1:
st.markdown(f"### {st.session_state.prompts[0]}")
scores = model.compute_images_probabilities(st.session_state.images, st.session_state.prompts[0])
scored_images = [(image, score) for image, score in zip(st.session_state.images, scores)]
sorted_scored_images = sorted(scored_images, key=lambda x: x[1], reverse=True)
for image, probability in sorted_scored_images[:5]:
col1, col2 = st.columns([1, 3])
col1.image(image, use_column_width=True)
percentage_prob = int(probability * 100)
col2.markdown(f"### ")
else:
raise ValueError("Invalid state")
# is_default_image = isinstance(state.images[0], str)
# is_default_prediction = is_default_image and state.is_default_text_input
# if is_default_prediction:
# st.markdown("<br>:information_source: Try writing your own prompts and using your own pictures!",
# unsafe_allow_html=True)
# elif is_default_image:
# st.markdown("<br>:information_source: You can also use your own pictures!",
# unsafe_allow_html=True)
# elif state.is_default_text_input:
# st.markdown("<br>:information_source: Try writing your own prompts!"
# " It can be whatever you can think of",
# unsafe_allow_html=True)
if __name__ == "__main__":
Sections.header()
col1, col2 = st.columns([1, 2])
col1.markdown(" "); col1.markdown(" ")
col1.markdown("#### Task selection")
task_name: str = col2.selectbox("", options=["Prompt ranking", "Image ranking", "Image classification"])
st.markdown("<br>", unsafe_allow_html=True)
init_state()
model = load_model(st.session_state.model_architecture)
if task_name == "Image classification":
Sections.image_uploader(accept_multiple_files=False)
if st.session_state.images is None:
st.markdown("or choose one from")
Sections.image_picker(default_text_input="banana; boat; bird")
input_label = "Enter the classes to chose from separated by a semi-colon. (f.x. `banana; boat; honesty; apple`)"
Sections.prompts_input(input_label, prompt_prefix='A picture of a ')
limit_number_images()
Sections.single_image_input_preview()
Sections.classification_output(model)
elif task_name == "Prompt ranking":
Sections.image_uploader(accept_multiple_files=False)
if st.session_state.images is None:
st.markdown("or choose one from")
Sections.image_picker(default_text_input="A calm afternoon in the Mediterranean; "
"A beautiful creature;"
" Something that grows in tropical regions")
input_label = "Enter the prompts to choose from separated by a semi-colon. " \
"(f.x. `An image that inspires; A feeling of loneliness; joyful and young; apple`)"
Sections.prompts_input(input_label)
limit_number_images()
Sections.single_image_input_preview()
Sections.classification_output(model)
elif task_name == "Image ranking":
Sections.image_uploader(accept_multiple_files=True)
if st.session_state.images is None or len(st.session_state.images) < 2:
st.markdown("or use this random dataset")
Sections.dataset_picker()
Sections.prompts_input("Enter the prompt to query the images by")
limit_number_prompts()
Sections.multiple_images_input_preview()
Sections.classification_output(model)
with st.expander("Advanced settings"):
st.session_state.model_architecture = st.selectbox("Model architecture", options=['RN50', 'RN101', 'RN50x4', 'RN50x16', 'RN50x64', 'ViT-B/32',
'ViT-B/16', 'ViT-L/14', 'ViT-L/14@336px'], index=0)
st.markdown("<br><br><br><br>Made by [@JavierFnts](https://twitter.com/JavierFnts) | [How was CLIP Playground built?](https://twitter.com/JavierFnts/status/1363522529072214019)"
"", unsafe_allow_html=True)
|