Spaces:
Runtime error
Runtime error
Commit
·
30c8dd0
1
Parent(s):
fe3ce1c
Refactored to use local clip
Browse files- clip_model.py +61 -0
- requirements.txt +1 -1
- streamlit_app.py +49 -65
clip_model.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import clip
|
2 |
+
from PIL.Image import Image
|
3 |
+
import torch
|
4 |
+
|
5 |
+
class ClipModel:
|
6 |
+
def __init__(self, model_name: str = 'RN50') -> None:
|
7 |
+
"""
|
8 |
+
Available models
|
9 |
+
['RN50', 'RN101', 'RN50x4', 'RN50x16', 'RN50x64', 'ViT-B/32',
|
10 |
+
'ViT-B/16', 'ViT-L/14', 'ViT-L/14@336px']
|
11 |
+
"""
|
12 |
+
self.model, self.img_preprocess = clip.load(model_name)
|
13 |
+
|
14 |
+
def predict(self, images: list[Image], prompts: list[str]) -> dict:
|
15 |
+
if len(images) == 1:
|
16 |
+
return self.compute_prompts_probabilities(images[0], prompts)
|
17 |
+
elif len(prompts) == 1:
|
18 |
+
return self.compute_images_probabilities(images, prompts[0])
|
19 |
+
else:
|
20 |
+
raise ValueError('Either images or prompts must be a single element')
|
21 |
+
|
22 |
+
def compute_prompts_probabilities(self, image: Image, prompts: list[str]) -> dict[str, float]:
|
23 |
+
preprocessed_image = self.img_preprocess(image).unsqueeze(0)
|
24 |
+
tokenized_prompts = clip.tokenize(prompts)
|
25 |
+
with torch.inference_mode():
|
26 |
+
image_features = self.model.encode_image(preprocessed_image)
|
27 |
+
text_features = self.model.encode_text(tokenized_prompts)
|
28 |
+
|
29 |
+
# normalized features
|
30 |
+
image_features = image_features / image_features.norm(dim=1, keepdim=True)
|
31 |
+
text_features = text_features / text_features.norm(dim=1, keepdim=True)
|
32 |
+
|
33 |
+
# cosine similarity as logits
|
34 |
+
logit_scale = self.model.logit_scale.exp()
|
35 |
+
logits_per_image = logit_scale * image_features @ text_features.t()
|
36 |
+
|
37 |
+
probs = list(logits_per_image.softmax(dim=-1).cpu().numpy()[0])
|
38 |
+
|
39 |
+
scored_prompts = {tag: float(prob) for tag, prob in zip(prompts, probs)}
|
40 |
+
return scored_prompts
|
41 |
+
|
42 |
+
def compute_images_probabilities(self, images: list[Image], prompt: str) -> dict[Image, float]:
|
43 |
+
raise
|
44 |
+
preprocessed_images = [self.img_preprocess(image).unsqueeze(0) for image in images]
|
45 |
+
tokenized_prompts = clip.tokenize(prompt)
|
46 |
+
with torch.inference_mode():
|
47 |
+
image_features = self.model.encode_image(preprocessed_image)
|
48 |
+
text_features = self.model.encode_text(tokenized_prompts)
|
49 |
+
|
50 |
+
# normalized features
|
51 |
+
image_features = image_features / image_features.norm(dim=1, keepdim=True)
|
52 |
+
text_features = text_features / text_features.norm(dim=1, keepdim=True)
|
53 |
+
|
54 |
+
# cosine similarity as logits
|
55 |
+
logit_scale = self.model.logit_scale.exp()
|
56 |
+
logits_per_image = logit_scale * image_features @ text_features.t()
|
57 |
+
|
58 |
+
probs = list(logits_per_image.softmax(dim=-1).cpu().numpy()[0])
|
59 |
+
|
60 |
+
scored_prompts = {tag: float(prob) for tag, prob in zip(prompts, probs)}
|
61 |
+
return scored_prompts
|
requirements.txt
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
streamlit~=0.76.0
|
2 |
-
|
3 |
Pillow==8.1.0
|
4 |
mock==4.0.3
|
|
|
1 |
streamlit~=0.76.0
|
2 |
+
git+https://github.com/openai/CLIP@b46f5ac
|
3 |
Pillow==8.1.0
|
4 |
mock==4.0.3
|
streamlit_app.py
CHANGED
@@ -1,40 +1,36 @@
|
|
1 |
import random
|
|
|
2 |
|
3 |
import streamlit as st
|
|
|
4 |
|
5 |
from session_state import SessionState, get_state
|
6 |
from images_mocker import ImagesMocker
|
7 |
|
8 |
-
images_mocker = ImagesMocker()
|
9 |
-
import booste
|
10 |
-
|
11 |
from PIL import Image
|
12 |
|
13 |
-
# Unfortunately Streamlit sharing does not allow to hide enviroment variables yet.
|
14 |
-
# Do not copy this API key, go to https://www.booste.io/ and get your own, it is free!
|
15 |
-
BOOSTE_API_KEY = "3818ba84-3526-4029-9dc8-ef3038697ea2"
|
16 |
-
|
17 |
IMAGES_LINKS = ["https://cdn.pixabay.com/photo/2014/10/13/21/34/clipper-487503_960_720.jpg",
|
18 |
"https://cdn.pixabay.com/photo/2019/09/06/04/25/beach-4455433_960_720.jpg",
|
19 |
-
# "https://cdn.pixabay.com/photo/2019/10/19/12/21/hot-air-balloons-4561264_960_720.jpg",
|
20 |
-
# "https://cdn.pixabay.com/photo/2019/12/17/18/20/peacock-4702197_960_720.jpg",
|
21 |
-
# "https://cdn.pixabay.com/photo/2016/11/15/16/24/banana-1826760_960_720.jpg",
|
22 |
-
# "https://cdn.pixabay.com/photo/2020/12/28/22/48/buddha-5868759_960_720.jpg",
|
23 |
"https://cdn.pixabay.com/photo/2019/11/11/14/30/zebra-4618513_960_720.jpg",
|
24 |
"https://cdn.pixabay.com/photo/2020/11/04/15/29/coffee-beans-5712780_960_720.jpg",
|
25 |
"https://cdn.pixabay.com/photo/2020/03/24/20/42/namibia-4965457_960_720.jpg",
|
26 |
"https://cdn.pixabay.com/photo/2020/08/27/07/31/restaurant-5521372_960_720.jpg",
|
27 |
-
# "https://cdn.pixabay.com/photo/2020/08/28/06/13/building-5523630_960_720.jpg",
|
28 |
"https://cdn.pixabay.com/photo/2020/08/24/21/41/couple-5515141_960_720.jpg",
|
29 |
"https://cdn.pixabay.com/photo/2020/01/31/07/10/billboards-4807268_960_720.jpg",
|
30 |
"https://cdn.pixabay.com/photo/2017/07/31/20/48/shell-2560930_960_720.jpg",
|
31 |
"https://cdn.pixabay.com/photo/2020/08/13/01/29/koala-5483931_960_720.jpg",
|
32 |
-
# "https://cdn.pixabay.com/photo/2016/11/29/04/52/architecture-1867411_960_720.jpg",
|
33 |
]
|
34 |
|
35 |
@st.cache # Cache this so that it doesn't change every time something changes in the page
|
36 |
-
def
|
37 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
|
40 |
def limit_number_images(state: SessionState):
|
@@ -140,19 +136,19 @@ class Sections:
|
|
140 |
def image_picker(state: SessionState, default_text_input: str):
|
141 |
col1, col2, col3 = st.beta_columns(3)
|
142 |
with col1:
|
143 |
-
default_image_1 = "https://cdn.pixabay.com/photo/2014/10/13/21/34/clipper-487503_960_720.jpg"
|
144 |
st.image(default_image_1, use_column_width=True)
|
145 |
if st.button("Select image 1"):
|
146 |
state.images = [default_image_1]
|
147 |
state.default_text_input = default_text_input
|
148 |
with col2:
|
149 |
-
default_image_2 = "https://cdn.pixabay.com/photo/2019/11/11/14/30/zebra-4618513_960_720.jpg"
|
150 |
st.image(default_image_2, use_column_width=True)
|
151 |
if st.button("Select image 2"):
|
152 |
state.images = [default_image_2]
|
153 |
state.default_text_input = default_text_input
|
154 |
with col3:
|
155 |
-
default_image_3 = "https://cdn.pixabay.com/photo/2016/11/15/16/24/banana-1826760_960_720.jpg"
|
156 |
st.image(default_image_3, use_column_width=True)
|
157 |
if st.button("Select image 3"):
|
158 |
state.images = [default_image_3]
|
@@ -161,7 +157,7 @@ class Sections:
|
|
161 |
@staticmethod
|
162 |
def dataset_picker(state: SessionState):
|
163 |
columns = st.beta_columns(5)
|
164 |
-
state.dataset =
|
165 |
image_idx = 0
|
166 |
for col in columns:
|
167 |
col.image(state.dataset[image_idx])
|
@@ -226,61 +222,50 @@ class Sections:
|
|
226 |
st.warning("Enter the prompt to classify")
|
227 |
|
228 |
@staticmethod
|
229 |
-
def classification_output(state: SessionState):
|
230 |
# Possible way of customize this https://discuss.streamlit.io/t/st-button-in-a-custom-layout/2187/2
|
231 |
if st.button("Predict") and is_valid_prediction_state(state): # PREDICT 🚀
|
232 |
with st.spinner("Predicting..."):
|
233 |
-
|
234 |
-
clip_response = booste.clip(BOOSTE_API_KEY,
|
235 |
-
prompts=state.prompts,
|
236 |
-
images=state.images)
|
237 |
-
else:
|
238 |
-
images_mocker.calculate_image_id2image_lookup(state.images)
|
239 |
-
images_mocker.start_mocking()
|
240 |
-
clip_response = booste.clip(BOOSTE_API_KEY,
|
241 |
-
prompts=state.prompts,
|
242 |
-
images=images_mocker.image_ids)
|
243 |
-
images_mocker.stop_mocking()
|
244 |
st.markdown("### Results")
|
245 |
# st.write(clip_response)
|
246 |
if len(state.images) == 1:
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
for prompt, probability in simplified_clip_results:
|
253 |
percentage_prob = int(probability * 100)
|
254 |
st.markdown(
|
255 |
f"###      {prompt}")
|
256 |
-
|
257 |
st.markdown(f"### {state.prompts[0]}")
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
in list(clip_response.values())[0].items()]
|
266 |
-
simplified_clip_results = sorted(simplified_clip_results, key=lambda x: x[1], reverse=True)
|
267 |
-
for image, probability in simplified_clip_results[:5]:
|
268 |
col1, col2 = st.beta_columns([1, 3])
|
269 |
col1.image(image, use_column_width=True)
|
270 |
percentage_prob = int(probability * 100)
|
271 |
col2.markdown(f"### ")
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
elif
|
281 |
-
|
282 |
-
|
283 |
-
|
|
|
|
|
|
|
284 |
|
285 |
|
286 |
Sections.header()
|
@@ -290,8 +275,7 @@ col1.markdown("#### Task selection")
|
|
290 |
task_name: str = col2.selectbox("", options=["Prompt ranking", "Image ranking", "Image classification"])
|
291 |
st.markdown("<br>", unsafe_allow_html=True)
|
292 |
|
293 |
-
|
294 |
-
|
295 |
session_state = get_state()
|
296 |
if task_name == "Image classification":
|
297 |
Sections.image_uploader(session_state, accept_multiple_files=False)
|
@@ -302,7 +286,7 @@ if task_name == "Image classification":
|
|
302 |
Sections.prompts_input(session_state, input_label, prompt_prefix='A picture of a ')
|
303 |
limit_number_images(session_state)
|
304 |
Sections.single_image_input_preview(session_state)
|
305 |
-
Sections.classification_output(session_state)
|
306 |
elif task_name == "Prompt ranking":
|
307 |
Sections.image_uploader(session_state, accept_multiple_files=False)
|
308 |
if session_state.images is None:
|
@@ -315,7 +299,7 @@ elif task_name == "Prompt ranking":
|
|
315 |
Sections.prompts_input(session_state, input_label)
|
316 |
limit_number_images(session_state)
|
317 |
Sections.single_image_input_preview(session_state)
|
318 |
-
Sections.classification_output(session_state)
|
319 |
elif task_name == "Image ranking":
|
320 |
Sections.image_uploader(session_state, accept_multiple_files=True)
|
321 |
if session_state.images is None or len(session_state.images) < 2:
|
@@ -324,7 +308,7 @@ elif task_name == "Image ranking":
|
|
324 |
Sections.prompts_input(session_state, "Enter the prompt to query the images by")
|
325 |
limit_number_prompts(session_state)
|
326 |
Sections.multiple_images_input_preview(session_state)
|
327 |
-
Sections.classification_output(session_state)
|
328 |
|
329 |
st.markdown("<br><br><br><br>Made by [@JavierFnts](https://twitter.com/JavierFnts) | [How was CLIP Playground built?](https://twitter.com/JavierFnts/status/1363522529072214019)"
|
330 |
"", unsafe_allow_html=True)
|
|
|
1 |
import random
|
2 |
+
import requests
|
3 |
|
4 |
import streamlit as st
|
5 |
+
from clip_model import ClipModel
|
6 |
|
7 |
from session_state import SessionState, get_state
|
8 |
from images_mocker import ImagesMocker
|
9 |
|
|
|
|
|
|
|
10 |
from PIL import Image
|
11 |
|
|
|
|
|
|
|
|
|
12 |
IMAGES_LINKS = ["https://cdn.pixabay.com/photo/2014/10/13/21/34/clipper-487503_960_720.jpg",
|
13 |
"https://cdn.pixabay.com/photo/2019/09/06/04/25/beach-4455433_960_720.jpg",
|
|
|
|
|
|
|
|
|
14 |
"https://cdn.pixabay.com/photo/2019/11/11/14/30/zebra-4618513_960_720.jpg",
|
15 |
"https://cdn.pixabay.com/photo/2020/11/04/15/29/coffee-beans-5712780_960_720.jpg",
|
16 |
"https://cdn.pixabay.com/photo/2020/03/24/20/42/namibia-4965457_960_720.jpg",
|
17 |
"https://cdn.pixabay.com/photo/2020/08/27/07/31/restaurant-5521372_960_720.jpg",
|
|
|
18 |
"https://cdn.pixabay.com/photo/2020/08/24/21/41/couple-5515141_960_720.jpg",
|
19 |
"https://cdn.pixabay.com/photo/2020/01/31/07/10/billboards-4807268_960_720.jpg",
|
20 |
"https://cdn.pixabay.com/photo/2017/07/31/20/48/shell-2560930_960_720.jpg",
|
21 |
"https://cdn.pixabay.com/photo/2020/08/13/01/29/koala-5483931_960_720.jpg",
|
|
|
22 |
]
|
23 |
|
24 |
@st.cache # Cache this so that it doesn't change every time something changes in the page
|
25 |
+
def load_default_dataset():
|
26 |
+
return [load_image_from_url(url) for url in IMAGES_LINKS]
|
27 |
+
|
28 |
+
def load_image_from_url(url: str) -> Image.Image:
|
29 |
+
return Image.open(requests.get(url, stream=True).raw)
|
30 |
+
|
31 |
+
@st.cache
|
32 |
+
def load_model() -> ClipModel:
|
33 |
+
return ClipModel()
|
34 |
|
35 |
|
36 |
def limit_number_images(state: SessionState):
|
|
|
136 |
def image_picker(state: SessionState, default_text_input: str):
|
137 |
col1, col2, col3 = st.beta_columns(3)
|
138 |
with col1:
|
139 |
+
default_image_1 = load_image_from_url("https://cdn.pixabay.com/photo/2014/10/13/21/34/clipper-487503_960_720.jpg")
|
140 |
st.image(default_image_1, use_column_width=True)
|
141 |
if st.button("Select image 1"):
|
142 |
state.images = [default_image_1]
|
143 |
state.default_text_input = default_text_input
|
144 |
with col2:
|
145 |
+
default_image_2 = load_image_from_url("https://cdn.pixabay.com/photo/2019/11/11/14/30/zebra-4618513_960_720.jpg")
|
146 |
st.image(default_image_2, use_column_width=True)
|
147 |
if st.button("Select image 2"):
|
148 |
state.images = [default_image_2]
|
149 |
state.default_text_input = default_text_input
|
150 |
with col3:
|
151 |
+
default_image_3 = load_image_from_url("https://cdn.pixabay.com/photo/2016/11/15/16/24/banana-1826760_960_720.jpg")
|
152 |
st.image(default_image_3, use_column_width=True)
|
153 |
if st.button("Select image 3"):
|
154 |
state.images = [default_image_3]
|
|
|
157 |
@staticmethod
|
158 |
def dataset_picker(state: SessionState):
|
159 |
columns = st.beta_columns(5)
|
160 |
+
state.dataset = load_default_dataset()
|
161 |
image_idx = 0
|
162 |
for col in columns:
|
163 |
col.image(state.dataset[image_idx])
|
|
|
222 |
st.warning("Enter the prompt to classify")
|
223 |
|
224 |
@staticmethod
|
225 |
+
def classification_output(state: SessionState, model: ClipModel):
|
226 |
# Possible way of customize this https://discuss.streamlit.io/t/st-button-in-a-custom-layout/2187/2
|
227 |
if st.button("Predict") and is_valid_prediction_state(state): # PREDICT 🚀
|
228 |
with st.spinner("Predicting..."):
|
229 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
230 |
st.markdown("### Results")
|
231 |
# st.write(clip_response)
|
232 |
if len(state.images) == 1:
|
233 |
+
scores = model.compute_prompts_probabilities(state.images[0], state.prompts)
|
234 |
+
scored_prompts = [(prompt, score) for prompt, score in zip(state.prompts, scores)]
|
235 |
+
st.json(scores)
|
236 |
+
sorted_scored_prompts = sorted(scored_prompts, key=lambda x: x[1], reverse=True)
|
237 |
+
for prompt, probability in sorted_scored_prompts:
|
|
|
238 |
percentage_prob = int(probability * 100)
|
239 |
st.markdown(
|
240 |
f"###      {prompt}")
|
241 |
+
elif len(state.prompts) == 1:
|
242 |
st.markdown(f"### {state.prompts[0]}")
|
243 |
+
|
244 |
+
scores = model.compute_prompts_probabilities(state.images[0], state.prompts)
|
245 |
+
scored_images = [(image, score) for image, score in zip(state.images, scores)]
|
246 |
+
st.json(scores)
|
247 |
+
sorted_scored_images = sorted(scored_prompts, key=lambda x: x[1], reverse=True)
|
248 |
+
|
249 |
+
for image, probability in sorted_scored_images[:5]:
|
|
|
|
|
|
|
250 |
col1, col2 = st.beta_columns([1, 3])
|
251 |
col1.image(image, use_column_width=True)
|
252 |
percentage_prob = int(probability * 100)
|
253 |
col2.markdown(f"### ")
|
254 |
+
else:
|
255 |
+
raise ValueError("Invalid state")
|
256 |
+
|
257 |
+
# is_default_image = isinstance(state.images[0], str)
|
258 |
+
# is_default_prediction = is_default_image and state.is_default_text_input
|
259 |
+
# if is_default_prediction:
|
260 |
+
# st.markdown("<br>:information_source: Try writing your own prompts and using your own pictures!",
|
261 |
+
# unsafe_allow_html=True)
|
262 |
+
# elif is_default_image:
|
263 |
+
# st.markdown("<br>:information_source: You can also use your own pictures!",
|
264 |
+
# unsafe_allow_html=True)
|
265 |
+
# elif state.is_default_text_input:
|
266 |
+
# st.markdown("<br>:information_source: Try writing your own prompts!"
|
267 |
+
# " It can be whatever you can think of",
|
268 |
+
# unsafe_allow_html=True)
|
269 |
|
270 |
|
271 |
Sections.header()
|
|
|
275 |
task_name: str = col2.selectbox("", options=["Prompt ranking", "Image ranking", "Image classification"])
|
276 |
st.markdown("<br>", unsafe_allow_html=True)
|
277 |
|
278 |
+
model = load_model()
|
|
|
279 |
session_state = get_state()
|
280 |
if task_name == "Image classification":
|
281 |
Sections.image_uploader(session_state, accept_multiple_files=False)
|
|
|
286 |
Sections.prompts_input(session_state, input_label, prompt_prefix='A picture of a ')
|
287 |
limit_number_images(session_state)
|
288 |
Sections.single_image_input_preview(session_state)
|
289 |
+
Sections.classification_output(session_state, model)
|
290 |
elif task_name == "Prompt ranking":
|
291 |
Sections.image_uploader(session_state, accept_multiple_files=False)
|
292 |
if session_state.images is None:
|
|
|
299 |
Sections.prompts_input(session_state, input_label)
|
300 |
limit_number_images(session_state)
|
301 |
Sections.single_image_input_preview(session_state)
|
302 |
+
Sections.classification_output(session_state, model)
|
303 |
elif task_name == "Image ranking":
|
304 |
Sections.image_uploader(session_state, accept_multiple_files=True)
|
305 |
if session_state.images is None or len(session_state.images) < 2:
|
|
|
308 |
Sections.prompts_input(session_state, "Enter the prompt to query the images by")
|
309 |
limit_number_prompts(session_state)
|
310 |
Sections.multiple_images_input_preview(session_state)
|
311 |
+
Sections.classification_output(session_state, model)
|
312 |
|
313 |
st.markdown("<br><br><br><br>Made by [@JavierFnts](https://twitter.com/JavierFnts) | [How was CLIP Playground built?](https://twitter.com/JavierFnts/status/1363522529072214019)"
|
314 |
"", unsafe_allow_html=True)
|