JaphetHernandez commited on
Commit
006e69f
verified
1 Parent(s): 338b938

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +23 -10
app.py CHANGED
@@ -16,7 +16,7 @@ tokenizer.pad_token = tokenizer.eos_token
16
 
17
  MAX_INPUT_TOKEN_LENGTH = 4096
18
 
19
- def generate_response(input_text, temperature=0.5, max_new_tokens=20):
20
  input_ids = tokenizer.encode(input_text, return_tensors='pt').to(model.device)
21
 
22
  if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
@@ -28,7 +28,9 @@ def generate_response(input_text, temperature=0.5, max_new_tokens=20):
28
  input_ids=input_ids,
29
  streamer=streamer,
30
  max_new_tokens=max_new_tokens,
31
- num_beams=3, # Usar beam search
 
 
32
  temperature=temperature,
33
  eos_token_id=[tokenizer.eos_token_id]
34
  )
@@ -44,7 +46,6 @@ def generate_response(input_text, temperature=0.5, max_new_tokens=20):
44
  if not outputs:
45
  raise ValueError("No se gener贸 ninguna respuesta.")
46
 
47
- # Post-procesamiento m谩s restrictivo
48
  response = "".join(outputs).strip().split("\n")[0]
49
  return response
50
  except Exception as e:
@@ -61,14 +62,25 @@ def main():
61
 
62
  if 'job_title' in df.columns:
63
  job_titles = df['job_title'].tolist()
64
- query = "aspiring human resources specialist"
65
-
66
- st.write("Archivo CSV cargado exitosamente:")
67
- st.write(df.head())
68
 
69
- initial_prompt = f"The list of job titles is: {job_titles}. Extract only the first job title from the list and return it as the answer."
70
- st.write(f"Query: {query}")
71
- st.write(f"Prompt inicial: {initial_prompt}")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72
 
73
  if st.button("Generar respuesta"):
74
  with st.spinner("Generando respuesta..."):
@@ -89,3 +101,4 @@ def main():
89
 
90
  if __name__ == "__main__":
91
  main()
 
 
16
 
17
  MAX_INPUT_TOKEN_LENGTH = 4096
18
 
19
+ def generate_response(input_text, temperature=0.5, max_new_tokens=50):
20
  input_ids = tokenizer.encode(input_text, return_tensors='pt').to(model.device)
21
 
22
  if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
 
28
  input_ids=input_ids,
29
  streamer=streamer,
30
  max_new_tokens=max_new_tokens,
31
+ do_sample=True,
32
+ top_k=40,
33
+ top_p=0.9,
34
  temperature=temperature,
35
  eos_token_id=[tokenizer.eos_token_id]
36
  )
 
46
  if not outputs:
47
  raise ValueError("No se gener贸 ninguna respuesta.")
48
 
 
49
  response = "".join(outputs).strip().split("\n")[0]
50
  return response
51
  except Exception as e:
 
62
 
63
  if 'job_title' in df.columns:
64
  job_titles = df['job_title'].tolist()
 
 
 
 
65
 
66
+ # Definir el prompt con in-context learning
67
+ initial_prompt = (
68
+ "Here are some examples of job title extraction:\n"
69
+ "Example 1:\n"
70
+ "List: ['Data Scientist', 'Machine Learning Engineer', 'AI Researcher']\n"
71
+ "First job title: 'Data Scientist'\n"
72
+ "\n"
73
+ "Example 2:\n"
74
+ "List: ['Software Developer', 'Backend Engineer', 'Frontend Developer']\n"
75
+ "First job title: 'Software Developer'\n"
76
+ "\n"
77
+ "Now, extract the first job title from the following list:\n"
78
+ f"List: {job_titles}\n"
79
+ "First job title:"
80
+ )
81
+
82
+ st.write("Prompt inicial con In-context Learning:")
83
+ st.write(initial_prompt)
84
 
85
  if st.button("Generar respuesta"):
86
  with st.spinner("Generando respuesta..."):
 
101
 
102
  if __name__ == "__main__":
103
  main()
104
+