Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -14,23 +14,21 @@ tokenizer = AutoTokenizer.from_pretrained(model_id)
|
|
14 |
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto")
|
15 |
tokenizer.pad_token = tokenizer.eos_token
|
16 |
|
17 |
-
MAX_INPUT_TOKEN_LENGTH =
|
18 |
|
19 |
-
def generate_response(input_text, temperature=0.5, max_new_tokens=
|
20 |
input_ids = tokenizer.encode(input_text, return_tensors='pt').to(model.device)
|
21 |
|
22 |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
23 |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
24 |
st.warning(f"Se recort贸 la entrada porque excedi贸 el l铆mite de {MAX_INPUT_TOKEN_LENGTH} tokens.")
|
25 |
|
26 |
-
streamer = TextIteratorStreamer(tokenizer, timeout=
|
27 |
generate_kwargs = dict(
|
28 |
input_ids=input_ids,
|
29 |
streamer=streamer,
|
30 |
max_new_tokens=max_new_tokens,
|
31 |
-
|
32 |
-
top_k=50,
|
33 |
-
top_p=0.9,
|
34 |
temperature=temperature,
|
35 |
eos_token_id=[tokenizer.eos_token_id]
|
36 |
)
|
@@ -38,14 +36,17 @@ def generate_response(input_text, temperature=0.5, max_new_tokens=100):
|
|
38 |
try:
|
39 |
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
40 |
t.start()
|
41 |
-
t.join() #
|
42 |
|
43 |
outputs = []
|
44 |
for text in streamer:
|
45 |
outputs.append(text)
|
46 |
if not outputs:
|
47 |
raise ValueError("No se gener贸 ninguna respuesta.")
|
48 |
-
|
|
|
|
|
|
|
49 |
except Exception as e:
|
50 |
st.error(f"Error durante la generaci贸n: {e}")
|
51 |
return "Error en la generaci贸n de texto."
|
@@ -65,13 +66,13 @@ def main():
|
|
65 |
st.write("Archivo CSV cargado exitosamente:")
|
66 |
st.write(df.head())
|
67 |
|
68 |
-
initial_prompt = f"
|
69 |
st.write(f"Query: {query}")
|
70 |
st.write(f"Prompt inicial: {initial_prompt}")
|
71 |
|
72 |
if st.button("Generar respuesta"):
|
73 |
with st.spinner("Generando respuesta..."):
|
74 |
-
response = generate_response(initial_prompt, temperature=0.
|
75 |
if response:
|
76 |
st.write(f"Respuesta del modelo: {response}")
|
77 |
else:
|
|
|
14 |
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto")
|
15 |
tokenizer.pad_token = tokenizer.eos_token
|
16 |
|
17 |
+
MAX_INPUT_TOKEN_LENGTH = 4096
|
18 |
|
19 |
+
def generate_response(input_text, temperature=0.5, max_new_tokens=20):
|
20 |
input_ids = tokenizer.encode(input_text, return_tensors='pt').to(model.device)
|
21 |
|
22 |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
23 |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
24 |
st.warning(f"Se recort贸 la entrada porque excedi贸 el l铆mite de {MAX_INPUT_TOKEN_LENGTH} tokens.")
|
25 |
|
26 |
+
streamer = TextIteratorStreamer(tokenizer, timeout=30.0, skip_prompt=True, skip_special_tokens=True)
|
27 |
generate_kwargs = dict(
|
28 |
input_ids=input_ids,
|
29 |
streamer=streamer,
|
30 |
max_new_tokens=max_new_tokens,
|
31 |
+
num_beams=3, # Usar beam search
|
|
|
|
|
32 |
temperature=temperature,
|
33 |
eos_token_id=[tokenizer.eos_token_id]
|
34 |
)
|
|
|
36 |
try:
|
37 |
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
38 |
t.start()
|
39 |
+
t.join() # Asegura que la generaci贸n haya terminado
|
40 |
|
41 |
outputs = []
|
42 |
for text in streamer:
|
43 |
outputs.append(text)
|
44 |
if not outputs:
|
45 |
raise ValueError("No se gener贸 ninguna respuesta.")
|
46 |
+
|
47 |
+
# Post-procesamiento m谩s restrictivo
|
48 |
+
response = "".join(outputs).strip().split("\n")[0]
|
49 |
+
return response
|
50 |
except Exception as e:
|
51 |
st.error(f"Error durante la generaci贸n: {e}")
|
52 |
return "Error en la generaci贸n de texto."
|
|
|
66 |
st.write("Archivo CSV cargado exitosamente:")
|
67 |
st.write(df.head())
|
68 |
|
69 |
+
initial_prompt = f"The list of job titles is: {job_titles}. Extract only the first job title from the list and return it as the answer."
|
70 |
st.write(f"Query: {query}")
|
71 |
st.write(f"Prompt inicial: {initial_prompt}")
|
72 |
|
73 |
if st.button("Generar respuesta"):
|
74 |
with st.spinner("Generando respuesta..."):
|
75 |
+
response = generate_response(initial_prompt, temperature=0.5)
|
76 |
if response:
|
77 |
st.write(f"Respuesta del modelo: {response}")
|
78 |
else:
|