|
from typing import Sequence
|
|
from dotenv import load_dotenv
|
|
from langchain_core.tools import BaseTool
|
|
from langchain_openai import ChatOpenAI
|
|
from langchain.memory import ConversationBufferMemory
|
|
from langchain_core.prompts.prompt import PromptTemplate
|
|
from langchain.tools.render import render_text_description
|
|
from langchain.agents.output_parsers import ReActSingleInputOutputParser
|
|
from langchain.agents import AgentExecutor
|
|
from langchain.agents.format_scratchpad import format_log_to_str
|
|
from schemas.model_llm import ModelLLM
|
|
from langchain.globals import set_verbose
|
|
import warnings
|
|
|
|
warnings.filterwarnings("ignore", category=DeprecationWarning)
|
|
|
|
|
|
set_verbose(True)
|
|
load_dotenv()
|
|
|
|
|
|
class ModelAI:
|
|
def __init__(self, model: ModelLLM):
|
|
self.model = model.name_model
|
|
self.base_url = model.base_url
|
|
self.api_key = model.api_key
|
|
|
|
def agent_executer(self, tools: Sequence[BaseTool]) -> AgentExecutor:
|
|
"""
|
|
Create an agent executor with the given tools and the model.
|
|
|
|
Args:
|
|
tools: A sequence of tools to be used by the agent.
|
|
|
|
Returns:
|
|
An agent executor with the given tools and the model.
|
|
"""
|
|
|
|
llm = ChatOpenAI(
|
|
model=self.model,
|
|
api_key=self.api_key,
|
|
base_url=self.base_url,
|
|
temperature=0.5,
|
|
)
|
|
memory = ConversationBufferMemory(
|
|
memory_key="chat_history", return_messages=False
|
|
)
|
|
prompt = self._load_prompt("prompt_system_agent.txt")
|
|
|
|
agent_prompt = PromptTemplate.from_template(prompt)
|
|
prompt = agent_prompt.partial(
|
|
tools=render_text_description(tools),
|
|
tool_names=", ".join([t.name for t in tools]),
|
|
)
|
|
|
|
agent = self._create_agent(llm, prompt)
|
|
return AgentExecutor(agent=agent, tools=tools, memory=memory)
|
|
|
|
@staticmethod
|
|
def _load_prompt(filepath: str) -> str:
|
|
with open(filepath, "r") as file:
|
|
return file.read()
|
|
|
|
@staticmethod
|
|
def _create_agent(llm: ChatOpenAI, prompt: PromptTemplate) -> dict:
|
|
llm_with_stop = llm.bind(stop=["\nObservation"])
|
|
return (
|
|
{
|
|
"input": lambda x: x["input"],
|
|
"agent_scratchpad": lambda x: format_log_to_str(
|
|
x["intermediate_steps"]
|
|
),
|
|
"chat_history": lambda x: x["chat_history"],
|
|
}
|
|
| prompt
|
|
| llm_with_stop
|
|
| ReActSingleInputOutputParser()
|
|
)
|
|
|