File size: 2,617 Bytes
bfb5d08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
from typing import Sequence
from dotenv import load_dotenv
from langchain_core.tools import BaseTool
from langchain_openai import ChatOpenAI
from langchain.memory import ConversationBufferMemory
from langchain_core.prompts.prompt import PromptTemplate
from langchain.tools.render import render_text_description
from langchain.agents.output_parsers import ReActSingleInputOutputParser
from langchain.agents import AgentExecutor
from langchain.agents.format_scratchpad import format_log_to_str
from schemas.model_llm import ModelLLM
from langchain.globals import set_verbose
import warnings

warnings.filterwarnings("ignore", category=DeprecationWarning)


set_verbose(True)
load_dotenv()


class ModelAI:
    def __init__(self, model: ModelLLM):
        self.model = model.name_model
        self.base_url = model.base_url
        self.api_key = model.api_key

    def agent_executer(self, tools: Sequence[BaseTool]) -> AgentExecutor:
        """

        Create an agent executor with the given tools and the model.



        Args:

            tools: A sequence of tools to be used by the agent.



        Returns:

            An agent executor with the given tools and the model.

        """

        llm = ChatOpenAI(
            model=self.model,
            api_key=self.api_key,
            base_url=self.base_url,
            temperature=0.5,
        )
        memory = ConversationBufferMemory(
            memory_key="chat_history", return_messages=False
        )
        prompt = self._load_prompt("prompt_system_agent.txt")

        agent_prompt = PromptTemplate.from_template(prompt)
        prompt = agent_prompt.partial(
            tools=render_text_description(tools),
            tool_names=", ".join([t.name for t in tools]),
        )

        agent = self._create_agent(llm, prompt)
        return AgentExecutor(agent=agent, tools=tools, memory=memory)

    @staticmethod
    def _load_prompt(filepath: str) -> str:
        with open(filepath, "r") as file:
            return file.read()

    @staticmethod
    def _create_agent(llm: ChatOpenAI, prompt: PromptTemplate) -> dict:
        llm_with_stop = llm.bind(stop=["\nObservation"])
        return (
            {
                "input": lambda x: x["input"],
                "agent_scratchpad": lambda x: format_log_to_str(
                    x["intermediate_steps"]
                ),
                "chat_history": lambda x: x["chat_history"],
            }
            | prompt
            | llm_with_stop
            | ReActSingleInputOutputParser()
        )