File size: 1,735 Bytes
bec5145
 
 
 
 
4688795
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bec5145
 
 
4688795
 
bec5145
4688795
 
bec5145
 
4688795
 
 
 
 
 
 
 
 
 
 
 
 
 
bec5145
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import { pipeline, env } from 'https://cdn.jsdelivr.net/npm/@xenova/[email protected]';

// Since we will download the model from the Hugging Face Hub, we can skip the local model check
env.allowLocalModels = false;

// Configuração do modelo de NER
const nerStatus = document.getElementById('status');
const textInput = document.getElementById('text-input');
const analyzeTextButton = document.getElementById('analyze-text');
const textOutput = document.getElementById('text-output');

nerStatus.textContent = 'Carregando modelo de NER...';
const nerModel = await pipeline('ner', 'Xenova/distilbert-base-multilingual-cased-ner-hrl');
nerStatus.textContent = 'Modelo de NER pronto!';

// Função para análise de texto
analyzeTextButton.addEventListener('click', async () => {
    const inputText = textInput.value.trim();
    if (!inputText) {
        textOutput.textContent = 'Por favor, insira um texto para análise.';
        return;
    }

    textOutput.textContent = 'Analisando...';
    const nerOutput = await nerModel(inputText);

    // Renderizando as entidades detectadas
    renderEntities(nerOutput);
});

// Função para exibir os resultados das entidades detectadas
function renderEntities(entities) {
    textOutput.innerHTML = '';
    entities.forEach(entity => {
        const { word, entity_group, score } = entity;

        const entityElement = document.createElement('div');
        entityElement.className = 'entity';
        entityElement.innerHTML = `
            <strong>Palavra:</strong> ${word} <br>
            <strong>Entidade:</strong> ${entity_group} <br>
            <strong>Confiança:</strong> ${(score * 100).toFixed(2)}%
        `;
        textOutput.appendChild(entityElement);
    });
}