Jadson commited on
Commit
4688795
·
verified ·
1 Parent(s): 655e9dd

Update index.js

Browse files
Files changed (1) hide show
  1. index.js +33 -66
index.js CHANGED
@@ -3,77 +3,44 @@ import { pipeline, env } from 'https://cdn.jsdelivr.net/npm/@xenova/transformers
3
  // Since we will download the model from the Hugging Face Hub, we can skip the local model check
4
  env.allowLocalModels = false;
5
 
6
- // Reference the elements that we will need
7
- const status = document.getElementById('status');
8
- const fileUpload = document.getElementById('upload');
9
- const imageContainer = document.getElementById('container');
10
- const example = document.getElementById('example');
11
-
12
- const EXAMPLE_URL = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/city-streets.jpg';
13
-
14
- // Create a new object detection pipeline
15
- status.textContent = 'Loading model...';
16
- const detector = await pipeline('object-detection', 'Xenova/detr-resnet-50');
17
- status.textContent = 'Ready';
18
-
19
- example.addEventListener('click', (e) => {
20
- e.preventDefault();
21
- detect(EXAMPLE_URL);
22
- });
23
-
24
- fileUpload.addEventListener('change', function (e) {
25
- const file = e.target.files[0];
26
- if (!file) {
27
  return;
28
  }
29
 
30
- const reader = new FileReader();
31
-
32
- // Set up a callback when the file is loaded
33
- reader.onload = e2 => detect(e2.target.result);
34
 
35
- reader.readAsDataURL(file);
 
36
  });
37
 
38
-
39
- // Detect objects in the image
40
- async function detect(img) {
41
- imageContainer.innerHTML = '';
42
- imageContainer.style.backgroundImage = `url(${img})`;
43
-
44
- status.textContent = 'Analysing...';
45
- const output = await detector(img, {
46
- threshold: 0.5,
47
- percentage: true,
 
 
 
 
48
  });
49
- status.textContent = '';
50
- output.forEach(renderBox);
51
- }
52
-
53
- // Render a bounding box and label on the image
54
- function renderBox({ box, label }) {
55
- const { xmax, xmin, ymax, ymin } = box;
56
-
57
- // Generate a random color for the box
58
- const color = '#' + Math.floor(Math.random() * 0xFFFFFF).toString(16).padStart(6, 0);
59
-
60
- // Draw the box
61
- const boxElement = document.createElement('div');
62
- boxElement.className = 'bounding-box';
63
- Object.assign(boxElement.style, {
64
- borderColor: color,
65
- left: 100 * xmin + '%',
66
- top: 100 * ymin + '%',
67
- width: 100 * (xmax - xmin) + '%',
68
- height: 100 * (ymax - ymin) + '%',
69
- })
70
-
71
- // Draw label
72
- const labelElement = document.createElement('span');
73
- labelElement.textContent = label;
74
- labelElement.className = 'bounding-box-label';
75
- labelElement.style.backgroundColor = color;
76
-
77
- boxElement.appendChild(labelElement);
78
- imageContainer.appendChild(boxElement);
79
  }
 
3
  // Since we will download the model from the Hugging Face Hub, we can skip the local model check
4
  env.allowLocalModels = false;
5
 
6
+ // Configuração do modelo de NER
7
+ const nerStatus = document.getElementById('status');
8
+ const textInput = document.getElementById('text-input');
9
+ const analyzeTextButton = document.getElementById('analyze-text');
10
+ const textOutput = document.getElementById('text-output');
11
+
12
+ nerStatus.textContent = 'Carregando modelo de NER...';
13
+ const nerModel = await pipeline('ner', 'Xenova/distilbert-base-multilingual-cased-ner-hrl');
14
+ nerStatus.textContent = 'Modelo de NER pronto!';
15
+
16
+ // Função para análise de texto
17
+ analyzeTextButton.addEventListener('click', async () => {
18
+ const inputText = textInput.value.trim();
19
+ if (!inputText) {
20
+ textOutput.textContent = 'Por favor, insira um texto para análise.';
 
 
 
 
 
 
21
  return;
22
  }
23
 
24
+ textOutput.textContent = 'Analisando...';
25
+ const nerOutput = await nerModel(inputText);
 
 
26
 
27
+ // Renderizando as entidades detectadas
28
+ renderEntities(nerOutput);
29
  });
30
 
31
+ // Função para exibir os resultados das entidades detectadas
32
+ function renderEntities(entities) {
33
+ textOutput.innerHTML = '';
34
+ entities.forEach(entity => {
35
+ const { word, entity_group, score } = entity;
36
+
37
+ const entityElement = document.createElement('div');
38
+ entityElement.className = 'entity';
39
+ entityElement.innerHTML = `
40
+ <strong>Palavra:</strong> ${word} <br>
41
+ <strong>Entidade:</strong> ${entity_group} <br>
42
+ <strong>Confiança:</strong> ${(score * 100).toFixed(2)}%
43
+ `;
44
+ textOutput.appendChild(entityElement);
45
  });
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46
  }