MyIVR / app.py
JabriA's picture
Add Moroccan Darija extraction app4
7fd6b33
raw
history blame
2.36 kB
import gradio as gr
import torch
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC, pipeline
import soundfile as sf
import librosa
# Load models
# Transcription model for Moroccan Darija
processor = Wav2Vec2Processor.from_pretrained("boumehdi/wav2vec2-large-xlsr-moroccan-darija")
transcription_model = Wav2Vec2ForCTC.from_pretrained("boumehdi/wav2vec2-large-xlsr-moroccan-darija")
# Summarization model
summarizer = pipeline("summarization", model="t5-small")
# Function to transcribe audio using Wav2Vec2
def transcribe_audio(audio_path):
# Load and resample audio to 16kHz
audio_input, original_sample_rate = sf.read(audio_path)
if original_sample_rate != 16000:
audio_input = librosa.resample(audio_input, orig_sr=original_sample_rate, target_sr=16000)
# Process audio for transcription
inputs = processor(audio_input, sampling_rate=16000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = transcription_model(**inputs).logits
predicted_ids = torch.argmax(logits, dim=-1)
transcription = processor.batch_decode(predicted_ids)[0]
return transcription
# Function to analyze topics
def analyze_topics(summary):
if "customer service" in summary.lower():
return "Customer Service"
elif "retention" in summary.lower():
return "Retention"
else:
return "Other"
# Function to transcribe, summarize, and analyze
def transcribe_summarize_analyze(audio_file):
# Transcription
transcription = transcribe_audio(audio_file)
# Summarization
summary = summarizer(transcription, max_length=50, min_length=10, do_sample=False)[0]["summary_text"]
# Topic Analysis
topic = analyze_topics(summary)
return transcription, summary, topic
# Gradio Interface
inputs = gr.Audio(type="filepath", label="Upload your audio file")
outputs = [
gr.Textbox(label="Transcription"),
gr.Textbox(label="Summary"),
gr.Textbox(label="Topic")
]
app = gr.Interface(
fn=transcribe_summarize_analyze,
inputs=inputs,
outputs=outputs,
title="Moroccan Darija Audio Processing",
description="Upload an audio file in Moroccan Darija to get its transcription, a summarized version of the content, and an identified topic (e.g., Customer Service or Retention)."
)
# Launch the app
if __name__ == "__main__":
app.launch()