Add Moroccan Darija extraction app4
Browse files
app.py
CHANGED
@@ -2,6 +2,7 @@ import gradio as gr
|
|
2 |
import torch
|
3 |
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC, pipeline
|
4 |
import soundfile as sf
|
|
|
5 |
|
6 |
# Load models
|
7 |
# Transcription model for Moroccan Darija
|
@@ -9,40 +10,42 @@ processor = Wav2Vec2Processor.from_pretrained("boumehdi/wav2vec2-large-xlsr-moro
|
|
9 |
transcription_model = Wav2Vec2ForCTC.from_pretrained("boumehdi/wav2vec2-large-xlsr-moroccan-darija")
|
10 |
|
11 |
# Summarization model
|
12 |
-
summarizer = pipeline("summarization", model="
|
13 |
|
14 |
-
# Function to transcribe audio
|
15 |
def transcribe_audio(audio_path):
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
20 |
with torch.no_grad():
|
21 |
logits = transcription_model(**inputs).logits
|
22 |
predicted_ids = torch.argmax(logits, dim=-1)
|
23 |
transcription = processor.batch_decode(predicted_ids)[0]
|
24 |
return transcription
|
25 |
|
26 |
-
# Function to analyze topics
|
27 |
def analyze_topics(summary):
|
28 |
if "customer service" in summary.lower():
|
29 |
return "Customer Service"
|
30 |
elif "retention" in summary.lower():
|
31 |
return "Retention"
|
32 |
else:
|
33 |
-
return "
|
34 |
|
35 |
-
# Function to transcribe, summarize, and analyze
|
36 |
def transcribe_summarize_analyze(audio_file):
|
37 |
# Transcription
|
38 |
transcription = transcribe_audio(audio_file)
|
39 |
|
40 |
# Summarization
|
41 |
-
summary = summarizer(transcription, max_length=
|
42 |
|
43 |
# Topic Analysis
|
44 |
topic = analyze_topics(summary)
|
45 |
-
|
46 |
return transcription, summary, topic
|
47 |
|
48 |
# Gradio Interface
|
@@ -57,11 +60,8 @@ app = gr.Interface(
|
|
57 |
fn=transcribe_summarize_analyze,
|
58 |
inputs=inputs,
|
59 |
outputs=outputs,
|
60 |
-
title="Moroccan Darija Audio
|
61 |
-
description=(
|
62 |
-
"Upload an audio file in Moroccan Darija to get its transcription, a summarized version, "
|
63 |
-
"and the detected topic (Customer Service or Retention)."
|
64 |
-
)
|
65 |
)
|
66 |
|
67 |
# Launch the app
|
|
|
2 |
import torch
|
3 |
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC, pipeline
|
4 |
import soundfile as sf
|
5 |
+
import librosa
|
6 |
|
7 |
# Load models
|
8 |
# Transcription model for Moroccan Darija
|
|
|
10 |
transcription_model = Wav2Vec2ForCTC.from_pretrained("boumehdi/wav2vec2-large-xlsr-moroccan-darija")
|
11 |
|
12 |
# Summarization model
|
13 |
+
summarizer = pipeline("summarization", model="t5-small")
|
14 |
|
15 |
+
# Function to transcribe audio using Wav2Vec2
|
16 |
def transcribe_audio(audio_path):
|
17 |
+
# Load and resample audio to 16kHz
|
18 |
+
audio_input, original_sample_rate = sf.read(audio_path)
|
19 |
+
if original_sample_rate != 16000:
|
20 |
+
audio_input = librosa.resample(audio_input, orig_sr=original_sample_rate, target_sr=16000)
|
21 |
+
|
22 |
+
# Process audio for transcription
|
23 |
+
inputs = processor(audio_input, sampling_rate=16000, return_tensors="pt", padding=True)
|
24 |
with torch.no_grad():
|
25 |
logits = transcription_model(**inputs).logits
|
26 |
predicted_ids = torch.argmax(logits, dim=-1)
|
27 |
transcription = processor.batch_decode(predicted_ids)[0]
|
28 |
return transcription
|
29 |
|
30 |
+
# Function to analyze topics
|
31 |
def analyze_topics(summary):
|
32 |
if "customer service" in summary.lower():
|
33 |
return "Customer Service"
|
34 |
elif "retention" in summary.lower():
|
35 |
return "Retention"
|
36 |
else:
|
37 |
+
return "Other"
|
38 |
|
39 |
+
# Function to transcribe, summarize, and analyze
|
40 |
def transcribe_summarize_analyze(audio_file):
|
41 |
# Transcription
|
42 |
transcription = transcribe_audio(audio_file)
|
43 |
|
44 |
# Summarization
|
45 |
+
summary = summarizer(transcription, max_length=50, min_length=10, do_sample=False)[0]["summary_text"]
|
46 |
|
47 |
# Topic Analysis
|
48 |
topic = analyze_topics(summary)
|
|
|
49 |
return transcription, summary, topic
|
50 |
|
51 |
# Gradio Interface
|
|
|
60 |
fn=transcribe_summarize_analyze,
|
61 |
inputs=inputs,
|
62 |
outputs=outputs,
|
63 |
+
title="Moroccan Darija Audio Processing",
|
64 |
+
description="Upload an audio file in Moroccan Darija to get its transcription, a summarized version of the content, and an identified topic (e.g., Customer Service or Retention)."
|
|
|
|
|
|
|
65 |
)
|
66 |
|
67 |
# Launch the app
|