Spaces:
Sleeping
Sleeping
File size: 8,117 Bytes
ec9e166 29d9fe7 acd296a ec9e166 72ae2bc ec9e166 ef04c9b a2a898e ef04c9b ec9e166 3e1c3a5 ec9e166 ad07962 165f5e4 ad07962 165f5e4 ad07962 8c29218 ec9e166 f8312e2 ec9e166 f8312e2 5635ea3 ec9e166 5635ea3 ec9e166 07570c7 d57a4cc 65dc97a a8c7c38 9b90bd0 a8c7c38 93c3e21 07570c7 ec9e166 07570c7 8c29218 7b4617e eac4b8a a2a898e eac4b8a 7b4617e ec9e166 e6f76c5 ec9e166 e6f76c5 ec9e166 e370bd9 ec9e166 e6f76c5 ec9e166 869cf18 ec9e166 8c29218 ec9e166 8c29218 ca19ca5 869cf18 ec9e166 8c29218 ec9e166 13387eb 869cf18 ec9e166 869cf18 ec9e166 869cf18 ec9e166 f8312e2 ec9e166 f8312e2 ec9e166 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
import os
import streamlit as st
from dotenv import load_dotenv
from PyPDF2 import PdfReader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.document_loaders import UnstructuredPDFLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain.chat_models import ChatOpenAI
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from htmlTemplates import css, bot_template, user_template
from langchain.llms import HuggingFaceHub
from langchain.vectorstores import Chroma
from gpt4all import GPT4All
# set this key as an environment variable
os.environ["HUGGINGFACEHUB_API_TOKEN"] = st.secrets['huggingface_token']
def add_logo():
st.markdown(
f"""
<style>
[data-testid="stSidebar"] {{
background-image: url(https://smbk.s3.amazonaws.com/media/organization_logos/111579646d1241f4be17bd7394dcb238.jpg);
background-repeat: no-repeat;
padding-top: 80px;
background-position: 20px 20px;
}}
</style>
""",
unsafe_allow_html=True,
)
def get_pdf_text(pdf_docs : list) -> str:
text = ""
for pdf in pdf_docs:
pdf_reader = PdfReader(pdf)
for page in pdf_reader.pages:
text += page.extract_text()
return text
def get_pdf_pages(pdf_docs):
"""
Extract text from a list of PDF documents.
Parameters
----------
pdf_docs : list
List of PDF documents to extract text from.
Returns
-------
str
Extracted text from all the PDF documents.
"""
pages = []
import tempfile
with tempfile.TemporaryDirectory() as tmpdirname:
for pdf in pdf_docs:
pdf_path=os.path.join(tmpdirname,pdf.name)
with open(pdf_path, "wb") as f:
f.write(pdf.getbuffer())
pdf_loader = UnstructuredPDFLoader(pdf_path)
pdf_pages = pdf_loader.load_and_split()
pages=pages+pdf_pages
return pages
#def get_text_chunks(text:str) ->list:
# text_splitter = CharacterTextSplitter(
# separator="\n", chunk_size=1500, chunk_overlap=300, length_function=len
# )
# chunks = text_splitter.split_text(text)
# return chunks
def get_text_chunks(pages):
"""
Split the input text into chunks.
Parameters
----------
text : str
The input text to be split.
Returns
-------
list
List of text chunks.
"""
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1024, chunk_overlap=64
)
texts = text_splitter.split_documents(pages)
print(str(len(texts)))
return texts
#def get_vectorstore(text_chunks : list) -> FAISS:
# model = "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2"
# encode_kwargs = {
# "normalize_embeddings": True
# } # set True to compute cosine similarity
# embeddings = HuggingFaceBgeEmbeddings(
# model_name=model, encode_kwargs=encode_kwargs, model_kwargs={"device": "cpu"}
# )
# vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
# return vectorstore
def get_vectorstore(text_chunks):
"""
Generate a vector store from a list of text chunks using HuggingFace BgeEmbeddings.
Parameters
----------
text_chunks : list
List of text chunks to be embedded.
Returns
-------
FAISS
A FAISS vector store containing the embeddings of the text chunks.
"""
MODEL_NAME = "WhereIsAI/UAE-Large-V1"
MODEL_NAME = "sentence-transformers/all-MiniLM-L6-v2"
#MODEL_NAME = "avsolatorio/GIST-Embedding-v0"
MODEL_NAME = "intfloat/e5-mistral-7b-instruct"
MODEL_NAME="avsolatorio/GIST-Embedding-v0"
#MODEL_NAME="intfloat/multilingual-e5-base"
#MODEL_NAME="BAAI/bge-base-en-v1.5" Alucina un poco
MODEL_NAME="BAAI/bge-large-en-v1.5"
hf_embeddings = HuggingFaceEmbeddings(model_name=MODEL_NAME)
vectorstore = Chroma.from_documents(text_chunks, hf_embeddings, persist_directory="db")
return vectorstore
def get_conversation_chain(vectorstore:FAISS) -> ConversationalRetrievalChain:
# llm = ChatOpenAI(temperature=0, model="gpt-3.5-turbo-0613")
#llm = HuggingFaceHub(
# repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1",
# #repo_id="clibrain/lince-mistral-7b-it-es",
# #repo_id="TheBloke/Mixtral-8x7B-Instruct-v0.1-GGUF"
# model_kwargs={"temperature": 0.5, "max_length": 2096},#1048
#)
llm = HuggingFaceHub(
repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1",
model_kwargs={"temperature": 0.5, "max_new_tokens": 1024, "max_length": 1048, "top_k": 3, "trust_remote_code": True, "torch_dtype": "auto"},
)
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
conversation_chain = ConversationalRetrievalChain.from_llm(
llm=llm, retriever=vectorstore.as_retriever(), memory=memory
)
return conversation_chain
#def handle_userinput(user_question:str):
# response = st.session_state.conversation({"pregunta": user_question})
# st.session_state.chat_history = response["chat_history"]
#
# for i, message in enumerate(st.session_state.chat_history):
# if i % 2 == 0:
# st.write(" Usuario: " + message.content)
# else:
# st.write("🤖 ChatBot: " + message.content)
def handle_userinput(user_question):
"""
Handle user input and generate a response using the conversational retrieval chain.
Parameters
----------
user_question : str
The user's question.
"""
response = st.session_state.conversation({"question": user_question})
st.session_state.chat_history = response["chat_history"]
for i, message in enumerate(st.session_state.chat_history):
if i % 2 == 0:
st.write("//_^ User: " + message.content)
else:
st.write("🤖 ChatBot: " + message.content)
def main():
st.set_page_config(
page_title="Chat with a Bot that tries to answer questions about multiple PDFs",
page_icon=":books:",
)
#st.markdown("# Charla con TedCasBot")
#st.markdown("Este Bot será tu aliado a la hora de buscar información en múltiples documentos pdf. Déjanos ayudarte! 🙏🏾")
st.markdown("# Chat with TedCasBot")
st.markdown("This Bot is a powerful AI tool designed to simplify the process of extracting information from PDF documents")
st.write(css, unsafe_allow_html=True)
if "conversation" not in st.session_state:
st.session_state.conversation = None
if "chat_history" not in st.session_state:
st.session_state.chat_history = None
#st.header("Charla con un Bot 🤖🦾 que te ayudará a responder preguntas sobre tus pdfs:")
st.header("Chat with the TedCasBot. He will help you with any doubt you may have with your documents:")
user_question = st.text_input("Ask what you need!:")
if user_question:
handle_userinput(user_question)
with st.sidebar:
add_logo()
st.subheader("Your documents")
pdf_docs = st.file_uploader(
"Upload your documents and ress 'Process'", accept_multiple_files=True
)
if st.button("Process"):
with st.spinner("Processing"):
# get pdf text
raw_text = get_pdf_text(pdf_docs)
pages = get_pdf_pages(pdf_docs)
# get the text chunks
#text_chunks = get_text_chunks(raw_text)
text_chunks = get_text_chunks(pages)
# create vector store
vectorstore = get_vectorstore(text_chunks)
# create conversation chain
st.session_state.conversation = get_conversation_chain(vectorstore)
if __name__ == "__main__":
main()
|