JPLTedCas commited on
Commit
07570c7
·
verified ·
1 Parent(s): a8f61dc

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +29 -9
app.py CHANGED
@@ -101,18 +101,38 @@ def get_text_chunks(pages):
101
 
102
 
103
 
104
- def get_vectorstore(text_chunks : list) -> FAISS:
105
- model = "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2"
106
- encode_kwargs = {
107
- "normalize_embeddings": True
108
- } # set True to compute cosine similarity
109
- embeddings = HuggingFaceBgeEmbeddings(
110
- model_name=model, encode_kwargs=encode_kwargs, model_kwargs={"device": "cpu"}
111
- )
112
- vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
113
  return vectorstore
114
 
115
 
 
 
116
  def get_conversation_chain(vectorstore:FAISS) -> ConversationalRetrievalChain:
117
  # llm = ChatOpenAI(temperature=0, model="gpt-3.5-turbo-0613")
118
  llm = HuggingFaceHub(
 
101
 
102
 
103
 
104
+ #def get_vectorstore(text_chunks : list) -> FAISS:
105
+ # model = "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2"
106
+ # encode_kwargs = {
107
+ # "normalize_embeddings": True
108
+ # } # set True to compute cosine similarity
109
+ # embeddings = HuggingFaceBgeEmbeddings(
110
+ # model_name=model, encode_kwargs=encode_kwargs, model_kwargs={"device": "cpu"}
111
+ # )
112
+ # vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
113
+ # return vectorstore
114
+
115
+
116
+ def get_vectorstore(text_chunks):
117
+ """
118
+ Generate a vector store from a list of text chunks using HuggingFace BgeEmbeddings.
119
+ Parameters
120
+ ----------
121
+ text_chunks : list
122
+ List of text chunks to be embedded.
123
+ Returns
124
+ -------
125
+ FAISS
126
+ A FAISS vector store containing the embeddings of the text chunks.
127
+ """
128
+ MODEL_NAME = "sentence-transformers/all-MiniLM-L6-v2"
129
+ hf_embeddings = HuggingFaceEmbeddings(model_name=MODEL_NAME)
130
+ vectorstore = Chroma.from_documents(text_chunks, hf_embeddings, persist_directory="db")
131
  return vectorstore
132
 
133
 
134
+
135
+
136
  def get_conversation_chain(vectorstore:FAISS) -> ConversationalRetrievalChain:
137
  # llm = ChatOpenAI(temperature=0, model="gpt-3.5-turbo-0613")
138
  llm = HuggingFaceHub(